期刊文献+

一种改进的基于BOMP的宽带频谱感知算法

A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP
下载PDF
导出
摘要 块稀疏信号是一种典型的稀疏信号,在块稀疏信号的压缩感知问题中,现有的理论研究往往假设信号的非零子块边界已知,然而这一先验信息对次用户往往是受限的。文中基于块稀疏信号压缩感知理论,研究块稀疏信号在非零子块边界信息未知时的压缩感知重建问题,提出一种融合了传统的单点重构算法和块稀疏重构算法的新算法。该算法将能量检测嵌入到重构算法中,用以判断块的完整性,实现了频谱感知与压缩感知的有机结合,不仅利用信号的块稀疏性提高了频谱检测速度,而且利用单点的OMP提高了算法的准确度。仿真表明,改进算法在非零子块边界信息未知时,依然能在很短的检测耗时下以较低的检测错误概率检测出信道的占用情况。 Block-sparse signal is a typical sparse signal.To deal with the compressed sensing problem of block-sparse signal,most of the existing theories assume that the boundary conditions of non-zero signals are known.However,this priori information is often limited to secondary users.In this paper,try to solve the reconstruction problem of imperfect block sparse signals without the boundary conditions of the non-zero signals.A modified spectrum sensing algorithm for wideband cognitive radio based on block-sparse orthogonal matching pursuit is proposed,which combines traditional single-point reconstruction algorithm and block sparse reconstruction algorithm together.To judge the integrity of the block,energy detection is used in reconstructing,not only improving the spectrum detection speed by the block sparse of signal,but also enhancing the accuracy of the algorithm by OMP.Simulation results show that,the modified algorithm still can detect the occupancy of the channel in a very short time under a low detection error probability without the boundary of the non-zero sub-block.
作者 刘正其 季薇
出处 《计算机技术与发展》 2014年第6期118-121,126,共5页 Computer Technology and Development
基金 江苏高校优势学科建设工程资助项目-"信息与通信工程" 南京邮电大学免评审类项目(NY212040)
关键词 认知无线电 压缩感知 宽带 块稀疏 cognitive radio compressed sensing wideband block-sparse
  • 相关文献

参考文献14

  • 1Donoho D L. Compressed sensing [ J ] IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on information Theory, 2006,52 (2) :489-509.
  • 3Candes E J,Wakin M B. An introduction to compressive sam- pling[ J]. IEEE Signal Processing Magazine,2008,25 (2) :21 -30.
  • 4Baraniuk R G, Cevher V, Duarte M F,et al. Model-based compressive sensing [ J ]. IEEE Transactions on Information Theory ,2010,56(4 ) : 1982-2001.
  • 5顾彬,杨震,胡海峰.基于压缩感知信道能量观测的协作频谱感知算法[J].电子与信息学报,2012,34(1):14-19. 被引量:16
  • 6石磊,周正,唐亮,孙璇,张静.认知无线电网络中压缩协作频谱感知[J].北京邮电大学学报,2011,34(5):76-79. 被引量:9
  • 7戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:215
  • 8Mishaii M, Eldar Y C. Blind multiband signal reconstructioncompressed sensing for analog signals [ J ]. IEEE Transactions on Signal Processing ,2009,57 (3) :993-1009.
  • 9Tian Zhi, Giannakis G B. Compressed sensing for widcband cognitive radio [ C ]//Proceedings of IEEE international con- ference on acoustics, speech and signal processing. Honolulu, HI : [ s. n. ] , 2007 : 1357-1360.
  • 10马坚伟,徐杰,鲍跃全,于四伟.压缩感知及其应用:从稀疏约束到低秩约束优化[J].信号处理,2012,28(5):609-623. 被引量:52

二级参考文献165

  • 1张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097. 被引量:30
  • 2E Candes, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006,52(2) :489 - 509.
  • 3D L Donoho. Compressed sensing[J]. IEEE Trans on Information Theory.2006,52(4) : 1289 - 1306.
  • 4E Candes, Terence Tao. Decoding by linear programming[ J ]. IEEE Trans on Information Theory, 2005, 51 ( 12): 4203 - 4215.
  • 5J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory, 2007,53 (12) : 4655 - 4666.
  • 6W Dai, O Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[ J]. IEEE. Trans on Information Theory, 2009,55(5) :2230 - 2249.
  • 7T T Do,L Gan,N Nguyen, T D Tran. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ A ]. In Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers [ C ]. Pacific Grove, California, 2008. 581 - 587.
  • 8R G Baraniuk, V Cevher, M F Duarte,C Hegde. Model-based compressive sensing [ J ]. IEEE, Trans on Information Theory, 2010,56(4) :1982 - 2001.
  • 9Y C Eldar,M Mishali. Robust recovery of signals from a structured union of subspaces[ J]. IEEE Trans on Information Theory,2009,55 (11) :5302 - 5316.
  • 10Y C Eldar, P Kuppinger, H Bolcskei. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery [J]. IEEE Trans on Signal Processing, 2010, 58 (6) : 3042 -3054.

共引文献301

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部