期刊文献+

修正的干扰噪声自相关矩阵重构波束形成算法 被引量:1

A Modified Interference-plus-noise Covariance Matrix Reconstruction Algorithm for Beamformer
下载PDF
导出
摘要 为改善采样自相关矩阵求逆(SMI)算法中期望信号存在于接收信号所引起的性能下降,提出一种修正干扰噪声自相关矩阵重构(CMR)算法。该算法首先选取采样自相关矩阵特征分解的最小特征值对应的特征向量构造空间分布系数,再对其在非期望信号波达方向上进行累加实现矩阵的重构。当存在相干信号时,可采取先利用特征向量元素对协方差矩阵进行托普利兹化处理实现解相干,再进行矩阵重构的托普利兹矩阵重构(TCMR)算法。计算机仿真与实验结果证明适用于非相干信号条件下的CMR算法与适用于相干信号条件下的TCMR算法具有更好的输出性能。 To improve the performance reduction of sample matrix inversion( SMI) algorithm as the desired signal exists in training data,a modified interference-plus-noise covariance matrix reconstructing( CMR) algorithm is proposed in this paper. The algorithm firstly uses the eigenvector corresponding to the mini-mum eigenvalue of the sample autocovariance matrix to structure the space distribution coefficient,and then accumulates it on the range except the direction of the desired signal to reconstruct the interference-plus-noise covariance matrix. In the presence of coherent signals,the element in the max eigenvector can be uti-lized to make the covariance matrix a Toeplitz matrix,and then the CMR algorithm( Toeplitz CMR,TCMR) can be used. Simulation and experiment results demonstrate that the CMR algorithm applied in incoherent signal circumstance and the TCMR algorithm applied in coherent signal circumstance have better output performance.
出处 《电讯技术》 北大核心 2014年第5期584-588,共5页 Telecommunication Engineering
关键词 波束形成 特征空间分解 自相关矩阵重构 相干信号 托普利兹矩阵 adaptive beamforming eigenspace decomposition covariance matrix reconstruction coherent signals Toeplitz matrix
  • 相关文献

参考文献11

  • 1Cox H,Zeskind R M,Oven M H.Robust adaptive beam-forming[ J ].IEEE Transactions on Acoustics,Speech,and Signal Processing,1987,35(10):1365-1376.
  • 2Carlson B D.Covariance matrix estimation errors and diago-nal loading in adaptive arrays [ J ].IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):397-401.
  • 3Elnashar A,Elnoubi S M,El-Mikati H A.Further study on robust adaptive beamforming with optimum diagonal loading[J].IEEE Transactions on Antennas and Propa-gation,2006,54(12):3647-3658.
  • 4Jung-Lang Y,Yeh C C.Generalized eigenspace-based beamformers[J].IEEE Transactions on Signal Process-ing,1995,43(11):2453-2461.
  • 5Liu Y,Wan Q.Robust beamformer based on total varia-tion minimisation and sparse-constraint [ J ].Electronics Letters,2010,46(25):1697-1699.
  • 6Nai S-E,Ser W,Yu Z-L,et al.A robust adaptive beam-forming framework with beampattern shaping constraints [ J ].IEEE Transactions on Antennas and Propagation,2009,57(7):2198-2203.
  • 7Mallipeddi R,Lie J P,Razul S G,et al.Robust adaptive beamforming based on covariance matrix Reconstruction for look direction mismatch [ J ].Progress in Electromag-netics Research Letters,2011,25:37-46.
  • 8GU Yu-jie,Leshem A.Robust adaptive beamforming based on interference covariance matrix Reconstruction and steering vector estimation [ J ].IEEE Transactions on Signal Processing,2012,60(7):3881-3885.
  • 9Lu Z,Li Y,Gao M,et al.Interference covariance matrix Reconstruction via steering vectors estimation for robust adaptive beamforming [ J ].Electronics Letters,2013,49(22):1373-1374.
  • 10Yang-Ho C.ESPRIT-Based coherent source localization with forward and backward vectors[J].IEEE Transactions on Signal Processing,2010,58(12):6416-6420.

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部