期刊文献+

群上的软同余关系 被引量:3

Soft Congruence Relations on Groups
原文传递
导出
摘要 引入了半群、群及软群上的软同余关系,并定义了半群上的软商集、群上的软陪集及软陪集下的软商集,讨论了半群上的软同余与同态、软同态之间的联系,同时得到群和软群上软同余的一系列相关结果,进一步揭示了软同余和正规化软群、正规软子群之间的关系。 In this paper, the concepts of soft congruence relations over semigroups, groups and soft groups are introduced. Also, the definitions of soft quotient set over semigroup, soft coset over group and soft quotient set over soft coset are given. The basic aim of this paper is to discuss connections among soft congruence relations and homomorphisms, soft homomorphisms over semigroups. At the same time, some relative results on soft congruence relations over groups and soft groups are obtained, which reveals the connections among soft congruence relations and normalistic soft groups, normal soft subgroups.
机构地区 西北大学数学系
出处 《模糊系统与数学》 CSCD 北大核心 2014年第2期76-81,共6页 Fuzzy Systems and Mathematics
基金 陕西省教育厅专项科研基金资助项目(08JK472)
关键词 软集 软群 软同余关系 软同态 正规化软群 Soft Set Soft Group Soft Congruence Relation Soft Homomorphism Normalistie Soft Group
  • 相关文献

参考文献8

  • 1Molodstov D.Soft set theory-First results[J].Comput Math Appl,1999,37(4):19-31.
  • 2Maji,et al.An application of soft sets in a decision making problem[J].Comput Math Appl,2002,44(8):1077-1083.
  • 3Aktas H,et al.Soft sets and soft groups[J].Inform Sci,2007,177(13):2726-2735.
  • 4All M I.A note on soft sets,rough sets and fuzzy soft sets[J].Applied Soft Computing,2011,11(4):3329-3332.
  • 5Sezgin A,Atagtin A O.Soft groups and normalistic soft groups[J].Comput Math Appl,2011,62(2):685-698.
  • 6Shabir M,Ali M I.Soft ideals and generalized fuzzy ideals in semigroups[J].New Mathematics and Natural Computation,2009,5(3):599-615.
  • 7阎瑞霞,刘金良,姚炳学,王翔.模糊软集与模糊软群[J].数学的实践与认识,2010,40(8):144-148. 被引量:10
  • 8Feng F,Jun Y B,Zhao X Z.Soft semirings[J].Comput Math Appl,2008,56(10):2621-2628.

二级参考文献7

  • 1Zadeh L A. Fuzzy sets[J]. Inform&: Control, 1965, 8: 338-353.
  • 2Pawlak Z. Rough sets[J]. Int J Inform Comput Sci, 1982(11): 341-356.
  • 3Molodtsov D. Soft set theory-first results[J]. Comput Math Appl, 1999(37): 19-31.
  • 4Maji P K, Bismas R, Roy A R. Soft set theory[J]. Comput Math Appl, 2003(45): 555-562.
  • 5Molodtsov D. The Theory of Soft Sets (in Russian) [M] . URSS Publishers, Moscow, 2004.
  • 6Hac Aktas, Naim Cagman. Soft sets and soft groups[J]. Information Sciences, 2007(177): 2726-2735.
  • 7Maji P K, Bismas R, Roy A R. Soft set theory [J]. The Jornal of Fuzzy Mathematics, 2001, 3(9): 589-602.

共引文献9

同被引文献22

  • 1张鹏鸽,刘三阳,高淑萍.逆半群上的几类模糊子半群[J].吉林大学学报(理学版),2006,44(5):719-722. 被引量:1
  • 2MOLODTSOV D. Soft set theory—first results[J]. Computers and Mathematics with Applications, 1999, 37:19-31.
  • 3MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45:555-562.
  • 4ALI M I, FENG Feng, LIU Xiaoyan, et al. On some new operations in soft set theory[J]. Computers and Mathematics with Applications, 2009, 57:1547-1553.
  • 5QIN Keyun, HONG Zhiyong. On soft equality[J]. Journal of Computational and Applied Mathematics, 2010, 234:1347-1355.
  • 6AKTAS H, CAGMAN N. Soft sets and soft groups[J]. Information Sciences, 2007, 177:2726-2735.
  • 7SEZGIN A, ATAGUN A O. Soft groups and normalistic soft groups[J]. Computers and Mathematics with Applications, 2011, 62(2):685-698.
  • 8ACAR H, KOYUNCU F, TANAY B. Soft sets and soft rings[J]. Computers and Mathematics with Applications, 2010, 59:3458-3463.
  • 9FENG Feng, JUN Y B, ZHAO Xianzhong. Soft semirings[J]. Computers and Mathematics with Applications, 2008, 56:2621-2628.
  • 10NAGARAJAN E K R, MEENAMBIGAI G, KRAGUJEVAC J. An application of soft sets to lattices[J]. Kragujevac Journal of Mathematics, 2011, 35(1):75-87.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部