期刊文献+

正五边形港湾内的水波共振 被引量:1

Oscillations within a regular pentagon-shaped harbor
下载PDF
导出
摘要 基于浅水长波假定,给出了正五边形封闭港湾内水波共振的解析表达式;并采用Boussinesq模型对该表达式进行验证。结果表明,正五边形封闭港湾内主要体现为类似一维港湾的单一波向上的共振,而产生共振的主要原因是壁面之间形成的驻波。 Based on the linear shallow water approximation, this paper presents analytic solutions for oscillation within a closed regular pentagon-shaped harbor. The Boussinesq model was used to verify the equation. The results show that oscillations in the closed regular pentagon-shaped harbor are similar to those in a one-dimensional water flume, and the resonance is mainly due to the standing wave between different walls of the harbor.
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期262-266,共5页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金(51209081) 中央高校基本科研业务费项目(2012B06514)
关键词 港湾共振 水波共振 正五边形港湾 Boussinesq模型 水波理论 harbor resonance oscillations regular pentagon-shaped harbor Boussinesq equation water wave theory
  • 相关文献

参考文献16

  • 1王岗,马小舟,马玉祥,董国海.短波对港池长周期振荡的影响[J].工程力学,2010,27(4):240-245. 被引量:11
  • 2MILES J,MUMK W.Harbor paradox[J].Journal of the Waterways and Harbors Division,1961,87:111-132.
  • 3IPPEN A T,GODA Y.Wave induced oscillations in harbors:the solution for a rectangular harbor connected to the open-sea [ R ].Washington D C:Hydrodynamics Laboratory,Massachusettes Institute of Technology,1963.
  • 4LE MEHAUTE B,KOH R.On the breaking of waves arriving at an angle to the shore [ J ].Journal of Hydraulic Research,1967,5(1):67-88.
  • 5WANG G,DONG G,PERLIN M,et al.An analytic investigation of oscillations within a harbor of constant slope[J].Ocean Engineering,2011,38(2/3):479-486.
  • 6WANG G,DONG G,PERLIN M,et al.Numerical investigation of oscillations within a harbor of constant slope induced by seafloor movements[J].Ocean Engineering,2011,38:2151-2161.
  • 7郑金海,徐龙辉,王岗.斜坡底床港湾内横向与纵向波浪共振的解析解[J].工程力学,2013,30(5):293-297. 被引量:3
  • 8PEREGRINE D H.Long waves on a beach[J].Journal of Fluid Mechanics,1967,27(4):815-827.
  • 9WITING J M.A unified model for the evolution of nonlinear water waves[ J].Journal of Computational Physics,1984,56(2):203-236.
  • 10MADSEN P A,MURRAY R,SORENSEN O R.New form of the Boussinesq equations with improved linear dispersion characteristics [ J].Coastal Engineering,1991,15(4):371-388.

二级参考文献58

  • 1李绍武,李春颖,谷汉斌,时钟.一种改进的近岸波浪破碎数值模型[J].水科学进展,2005,16(1):36-41. 被引量:13
  • 2宋善柏,张慈珩.秦皇岛港西港区航道改造工程波浪数学模型研究[J].水道港口,2006,27(4):236-240. 被引量:7
  • 3马小舟,董国海,滕斌.破碎带波浪的数值模拟[J].计算力学学报,2007,24(2):203-208. 被引量:13
  • 4马小舟.近岸低频波浪的Boussinesq模拟[C].大连:大连理工大学,2006.
  • 5Bowers E C. Harbour resonance due to set-down beneath wave groups [J]. Journal of Fluid Mechanical, 1976, 79(1): 71 -92.
  • 6Mei C C, Agnon Y. Long-period oscillations in a harbour induced by incident short waves [J]. Journal of Fluid Mechanical, 1989, 208: 595-608.
  • 7De Girolamo P. An experimental on harbour resonance induced by incident regular waves and irregular short waves [J]. Coastal Engineering, 1996, 27(1-2): 47-66.
  • 8Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121(5): 251- 261.
  • 9Wei G. Fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves [J]. Journal of Fluid Mechanical, 1995, 294:71 - 92.
  • 10Schaffer H A, Sorensen O R. On the internal wave generation in Boussinesq and mild-slope equations [J]. Coastal Engineering, 2006, 53(4): 319-323.

共引文献32

同被引文献15

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部