期刊文献+

基于量子蚁群算法的数据库连接查询优化 被引量:1

Joint Query Optimization of Database Based on Quantum Ant Colony Algorithm
下载PDF
导出
摘要 连接查询优化是提高数据库性能的关键技术,针对数据库连接查询优化效率低的难题,提出一种量子蚁群算法的数据库连接查询优化方法(QACA)。首先,将数据库连接查询计划左深树看作一个蚂蚁,然后,利用量子旋转门更新各路径信息素,并利用混沌变异策略保持种群多样性,通过蚂蚁之间的信息交流找到数据库连接查询最优计划,最后,进行数据库连接查询优化实例分析。结果表明,QACA是解决数据库连接查询优化的有效途径,获得理想的数据库连接查询计划,具有实际意义。 Query optimization is a key problem to improve the performance of database systems,in order to solve low query problem of traditional database query optimization algorithm,a novel query optimization method of database based on quantum ant colony algorithm.Firstly,Query plan for a left deep tree is taken as a ant,and then quantum rotation gate is used to update pheromone and chaos mutation strategy is used to keep the multi-population,and the optimal query plan is obtained by information transfer of ants.Finally,performance of the method is tested by database query optimization.The results show that the proposed algorithm is an effective method for database query optimization,and can obtain good query optimization plan.
作者 张大卫 李涛
机构地区 昆明学院
出处 《微型电脑应用》 2014年第5期40-43,共4页 Microcomputer Applications
关键词 数据库 蚁群算法 连接查询优化 混沌变异 量子 Database Ant Colony Algorithm Optimization query Chaotic Mutation Quantum
  • 相关文献

参考文献11

二级参考文献67

共引文献55

同被引文献15

  • 1VIJAY KUMAR T V. Vikram Singh and Ajay Kumar Ver- ma. Distributed Query Processing Plans Generation Using Genetic Algorithm [ J ]. International Journal of Computer Theory and Engineering,2012,3( 1 ) :38-45.
  • 2ZHOU ZEHAI. Using Heuristics and Genetic Algorithms for Large-scale Database Query Optimization [ J ]. Journal of In- formation and Computing Science ,2010,2 (4) :261-280.
  • 3CHEN POHAN, Seyed Mohsen Shahandashti. Hybrid of Ge- netic Algorithm and Simulated Annealing for Multiple Pro- ject Scheduling with Multiple Resource Constraints[ J]. Au- tomation in Construction. 2012,18 (4) :434-443.
  • 4WEI L Y,ZHAO M. A Niche Hybrid Genetic Algorithm for Global Optimization of Continuous Muhimodal Functions [ J ]. Applied Mathematics and Computation, 2013,160 ( 3 ) : 649-661.
  • 5SITARZ, PIOTR, POWALKA, BARTOSZ. Modal Parameters Estimation Usingant Colony Optimization Algorithnm [ J ]. Mechanical Sysems and Signal Processing, 2016 ( 76/77 ) : 531-554.
  • 6GAO, SHANGCE, WANG, YIRUI, CHENG, JIUJUN. Ant Colony Optimization with Clustering for Solving the Dynamic Location Routing Problem[J]. Applied Mathemamatics and Computation,2016 ( 285 ) : 149-173.
  • 7DADANEH, BEHROUZ ZAMANI, MARKID, HOSSEIN YEGANEH,ZAKEROLHOSSEINI. Ali Unsupervised Proba- bilistic Feature Selection Using ant Colony Optimization [J]. Expert Systens with Application,2016(53) :27-42.
  • 8LIB H, LU M, SHAN Y G. Parallel Ant Colony Optimiza- tion for the Determination of a Point Heat Source Position in a 2-D Domain [ J ]. Applied Thermal Engineering, 2015 (91) :994-1002.
  • 9MI,NAN, HOU, JINGWEI, MI. Wenbao Optimal Spatial Land-use Allocation for Limited Development Ecological Zones Based on the Geographic Information System and a Genetic Ant Colony Algorithm [ J ]. International Journal of Geographical Information Science, 2015, 29 (12): 2174-2193.
  • 10XU BO, MIN. Huaqing Solving Minimum Constraint Remov- al (MCR) Problem Using a Social-force-model-based Ant Colonyalgorithm[J]. Applied Soft Computing,2016, (43) : 553-560.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部