摘要
连接查询优化是提高数据库性能的关键技术,针对数据库连接查询优化效率低的难题,提出一种量子蚁群算法的数据库连接查询优化方法(QACA)。首先,将数据库连接查询计划左深树看作一个蚂蚁,然后,利用量子旋转门更新各路径信息素,并利用混沌变异策略保持种群多样性,通过蚂蚁之间的信息交流找到数据库连接查询最优计划,最后,进行数据库连接查询优化实例分析。结果表明,QACA是解决数据库连接查询优化的有效途径,获得理想的数据库连接查询计划,具有实际意义。
Query optimization is a key problem to improve the performance of database systems,in order to solve low query problem of traditional database query optimization algorithm,a novel query optimization method of database based on quantum ant colony algorithm.Firstly,Query plan for a left deep tree is taken as a ant,and then quantum rotation gate is used to update pheromone and chaos mutation strategy is used to keep the multi-population,and the optimal query plan is obtained by information transfer of ants.Finally,performance of the method is tested by database query optimization.The results show that the proposed algorithm is an effective method for database query optimization,and can obtain good query optimization plan.
出处
《微型电脑应用》
2014年第5期40-43,共4页
Microcomputer Applications
关键词
数据库
蚁群算法
连接查询优化
混沌变异
量子
Database
Ant Colony Algorithm
Optimization query
Chaotic Mutation
Quantum