期刊文献+

一类具有可转移变量核的Hilbert型奇异重积分算子的有界性与范数及其应用

On the Boundedness and Norm of a Hilbert Type Singular Multiple Integral Operator with the Transferable Variable Kernel
下载PDF
导出
摘要 研究Hilbert型奇异积分算子的重要问题之一,是讨论其积分核具有何种特征时算子是有界的,并进一步讨论算子的范数表达式.本文定义了含有两个参数的可转移变量函数,一般地,这是一种非齐次函数.本文利用权系数方法及实分析技巧,讨论了此类函数作为积分核的Hilbert型重奇异积分算子的有界性,得到其范数表达式及相应的参数条件,所得结果包含了诸多文献中的结论.最后,文中讨论了理论结果的应用. One of important research issues about Hilbert-type singular integral operator is to discuss what characteristics the integral kernel should have so that the operator is bounded,and then to further examine the operator's norm expressions.In this paper,we introduce the concept of transferable variable functions with two parameters,in general,this is a nonhomogeneous function.Using weighting function methods and techniques of real analysis,we discuss the boundedness of the operator with such functions as the integral kernel,and obtain the norm expression of the operator and the corresponding parameters condition.These results extend many conclusions in other papers.Finally,we discuss the application of the obtained theoretical results.
作者 洪勇
出处 《工程数学学报》 CSCD 北大核心 2014年第3期387-398,共12页 Chinese Journal of Engineering Mathematics
基金 广东省自然科学基金(S2012010010376)~~
关键词 可转移变量函数核 Hilbert型奇异重积分算子 有界算子 算子范数 transferable variable function kernel Hilbert-type singular multiple integral operator bounded operator norm of operator
  • 相关文献

参考文献9

  • 1Hardy G H,Littlwood J E,Polya G.Inequalities[M].Cambridge:Cambridge University Press,1952.
  • 2洪勇.一类带齐次核的奇异重积分算子的范数及其应用[J].数学年刊(A辑),2011,32(5):599-606. 被引量:11
  • 3洪勇.带对称齐次核的级数算子的范数刻画及其应用[J].数学学报(中文版),2008,51(2):365-370. 被引量:23
  • 4Yang B C,Krnic M.Hilbert-type inequalities and related operators with homogeneous kernel of degree 0[J].Mathematical InequMities Applications,2010,13(4):817-839.
  • 5Levin V.On the two-parameter extension and analogue of Hilbert's inequality[J].Journal of the London Mathematical Society,1936,11:114-124.
  • 6Cizmesija A,Krnic M,Pecaric J.General Hilbert-type inequalities with nomconjugate exponents[J].Math-ematical Inequalities Applications,2008,11(2):237-269.
  • 7Krnic M,Mingzhe G,Pecaric J,et al.On the best constant in Hilbert's inequality[J].Mathematical In-equalities Applications,2005,8(2):317-329.
  • 8杨必成.参量化的Hilbert型不等式研究综述[J].数学进展,2009,38(3):257-268. 被引量:50
  • 9菲赫金哥尔茨 Γ М 著 叶彦谦译.微积分学教程[M].北京:人民教育出版社,1957,1(1)..

二级参考文献14

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部