期刊文献+

大分位数与上端点的估计(英文)

Estimators for a Large Quantile and the Upper Endpoint
下载PDF
导出
摘要 极值指数的估计是极值理论里一个基本问题.本文基于一类极值指数的Pickands型估计量,给出了分布的大分位数与上端点的估计,还讨论了这些估计量的渐近性质. The estimation of extreme value index is a primary problem in extreme value theory.In this paper,based on a Pickands-type estimator for the extreme value index,estimators for a large quantile and the upper endpoint of a probability distribution are established.Furthermore,the asymptotic properties of these estimators are discussed.
作者 何腊梅
出处 《工程数学学报》 CSCD 北大核心 2014年第3期424-434,共11页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(60874107 10771148) the Opening Fund of Geomathematics Key Laboratory of Sichuan Province(scsxdz2011006)
关键词 极值指数 Pickands型估计量 大分位数 上端点 extreme value index Pickands' estimator large quantile upper endpoint
  • 相关文献

参考文献17

  • 1de Haan L.Extreme value statistics[C]//Janos Galambos,et al.,Extreme Value Theory and Applications,Netherlands:Kluwer Academic Publishers,1994:93-122.
  • 2Dekkers A L M,de Haan L.On the estimation of the extreme-value index and large quantile estimation[J].Annals of Statistics,1989,17(4):1795-1832.
  • 3Dekkers A L M,et al.A moment estimation for the index of extreme-value distribution[J].Annals of Statistics,1989,17(4):1833-1855.
  • 4Draisma G,et al.A bootstrap-based method to achieve optimality in estimating the extreme-value index[J].Extremes,1999,2(4):367-404.
  • 5Ferreira A,et al.On optimising the estimation of high quantiles of a probability distribution[J].Statistics,2003,37(5):401-434.
  • 6何腊梅.一类Pickands型估计量的收敛性[J].数学学报(中文版),2004,47(4):805-810. 被引量:4
  • 7Hfisler J,etal.Weighted least squares estimation of the extreme value index[J].Statistics Probability Letters,2006,76(9):920-930.
  • 8Pan J Z.On asymptotic normality of Pickands' estimator for the index of an extreme-value distribution[J].Chinese Annals of Mathematics,1995,16A(2):173-180.
  • 9潘家柱.Pickands估计的强收敛速度[J].北京大学学报(自然科学版),1995,31(3):291-296. 被引量:1
  • 10Paulauskas V.A new estimator for a tail index[J].Acta Applicandae Mathematicae,2003,79(1-2):55-67.

二级参考文献13

  • 1潘家柱,Chin Ann Math B,1994年,2期
  • 2Qi Yongcheng,Chin Sci Bull,1992年,37卷,1409页
  • 3Cheng Shihong,Limit theorems in probability,1999年
  • 4Dekkers A. L. M., De Haan L., On the estimation of the extreme-value index and large quantile estimation,Ann. Statist., 1989, 17(4): 1795-1832.
  • 5Pan J. Z., Nate of strong convergence of Pickands' estimator, Acta Scientiarum Naturalium Universitatis Pekinensis, 1995, 31(3): 291-296.
  • 6Pan J. Z., On asymptotic normality of Pickands' estimator for the index of an extreme-value distribution,Chinese Annals of Mathematics, 1995, 16A(2): 173-180 (in Chinese).
  • 7Qi Y. C., Cheng S. H., Convergence of Pickands-type estimator, Chinese Science Bulletin, 1992, 37: 1409-1413.
  • 8Peng Z. X., Extension of Pickands-type estimator, Acta Mathematica Sinica, 1997, 40(5): 759-762 (in Chinese).
  • 9De Haan L., Extreme value statistics, in extreme value theory and applications, Janos Galambos et al (eds),The Netherlands: Kluwer Academic Publishers, 1994, 93-122.
  • 10De Haan L., Slow variation and characterization of domains of attraction, in statistical extremes and applications, J. Tiago de Oliveira (ed), Dordrecht: Reidel, 1984, 31-48.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部