期刊文献+

基于MGARCH模型的情景树生成算法(英文) 被引量:2

Scenario Tree Generation Algorithms under MGARCH Models
下载PDF
导出
摘要 多阶段随机最优化模型的质量依赖于描述不确定环境的情景树的质量.本文从以下几个方面对现有的情景树生成算法进行了改进:为恰当反映随机数据过程高阶矩的变化,我们提出了一个基于MGARCH模型的新模拟方法来生成情景;为改进现有情景生成的序列最优化方法,我们用MGARCH模型来递归估计随机数据过程的中心矩,设计了一个新的混合智能算法来求解序列最优化方法中所遇到的非凸规划问题,并由此导出了一个基于MGARCH模型的、可用于生成一般结构多阶段情景树的新型有效序列最优化方法.最后,利用中国和美国股票市场的金融交易数据,我们进行了一系列数值试验以说明我们算法的实用性、灵活性和有效性. The quality of multi-stage stochastic optimization models depends heavily on the quality of the underlying scenario tree to describe the uncertain environment.Existing scenario generation algorithms are improved from the following aspects: to properly reflect variations in higher order moments of the underlying random data process,we propose a new simulation approach for scenario generation under the MGARCH model; to improve the current sequential optimization scenario generation method,the MGARCH model is used to recursively estimate central moments of the stochastic data process,and a new hybrid intelligent algorithm is designed to solve non-convex programming problems encountered during the sequential optimization process,derived from which is an efficient new-type sequential optimization method for general multistage scenario tree generation under MGARCH models;finally,numerical results with trade data from Chinese and American stock markets illustrate the practicality,flexibility and efficiency of our algorithms.
出处 《工程数学学报》 CSCD 北大核心 2014年第3期435-453,共19页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(10571141 70971109 71371152)
关键词 情景 树结构 情景生成 模拟 序列最优化 scenario tree structure scenario generation simulation sequential optimization
  • 相关文献

参考文献33

  • 1Dupaov J,Consigli G,Wallace S W.Scenarios for multistage stochastic programs[J].Annals of Operations Research,2000,100(1-4):25-53.
  • 2Mulvey J M,Vladimirou H.Stochastic network programming for financial planning problems[J].Manage-ment Science,1992,38(11):1642-1664.
  • 3Carino D R,Kent T,Myers D H,et al.The Russell-Yasuda Kasai model:an asset liability model for a Japanese insurance company using multistage stochastic programming[J].Interfaces,1994,24(1):29-49.
  • 4Gulpmar N,Rusterm B,Settergren R.Simulation and optimization approaches to scenario tree genera-tion[J].Journal of Economic Dynamics & Control,2004,28(7):1291-1315.
  • 5Pennanen T.Epi-convergent discretization of multistage stochastic programs[J].Mathematics of Operations Research,2005,30(1):245-256.
  • 6Pennanen T.Epi-convergent discretizations of multistage stochastic programs via integration quadra-tures[J].Mathematical Programming,Series B,2009,116(1):461-479.
  • 7Frauendorfer K.Barycentric scenario trees in convex multistage stochastic programming[J].Mathematical Programming,Series B,1996,75(2):277-293.
  • 8Casey M,Sen S.The scenario generation algorithm for multistage stochastic linear programming[J].Math-ematics of Operations Research,2005,30(3):615-631.
  • 9Kuhn D.Generalized Bounds for Convex Multistage Stochastic Programs[M].Berlin:Springer,2005.
  • 10Chen Z P,Consigli G,Dempster M A H,et al.Towards sequential sampling algorithms for dynamic portfolio management[C]//C.Zopounidis,eds.,New Operational Tools for the Management of Financial Risks,Portland:Kluwer Academic Publishers,1997:197-211.

二级参考文献11

  • 1[1]J.H. Holland, Adaption in Natural and Artifical System,The University of Michigan Press (1975).
  • 2[2]D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading,MA (1989).
  • 3[3]D.B. Fogel, IEEE Tansactions on Neural Networks 5(1994) 3.
  • 4[4]LUO Chen-Zhong and SHAO Hui-He, Control and Decision 15 (2000) 557.
  • 5[5]YANG Li-Jiang, CHEN Tian-Lun, and Huang Wu-Qun,Commun. Theor. Phys. (Beijing, China) 35 (2001) 22.
  • 6[6]Chang-Song Zhou and Tian-Lun Chen, Phys. Rev. E55(1997) 2580.
  • 7[7]R. Hinterding, Z. Michalewicz, and T.C. Peachey, LNCS1141, PPSNIV Proceedings[C], USA (1996) 1141.
  • 8[8]Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd revised and extended edition,Springer-Verlag, Berlin (1996).
  • 9[9]X. Yao, Int. J. Intelligent Systems 8 (1993) 539.
  • 10[10]X. Yao and Y. Liu, Control and Cybernetics 26 (1997)451.

共引文献13

同被引文献21

  • 1BRUCKNER D, VELIK R. Behavior learning in dwelling environments with hidden Markov modelsEJ]. IEEE Trans on Industrial Electronics, 2010,57(11) : 3653-3660.
  • 2ATHANASOPOULOU E, LI Lingxi, HADJICOSTIS C N. Maximum likelihood failure diagnosis in finite state ma- chines under unreliable observationsEJ]. IEEE Trans on Automatic Control,2010,55(3): 579-593.
  • 3XIE Yi, HU Jiankun, XIANG Yang. Modeling oscillation behavior of network traffic by nested hidden markov Model with variable state-durationEJ]. IEEE Trans on Parallel and Distributed Systems, 2013,24(9): 1807-1817.
  • 4GU Tao, WANG Liang, WLI Zhanqing. A pattern mining approach to sensor-based human activity recognitionEJ]. IEEE Transactions on Knowledge and Data Engineering, 2011(9) :1359-1372.
  • 5JOHANSSON M,OLOFSSON T. Bayesian model selection for Markov, hidden Markov, and multinomial modelsEJ:. IEEE Signal Processing Society,2007,14(2): 129-132.
  • 6AWl) M A, KHALIL L Prediction of user's web-browsingn behavior.-Application of Markov modelEJJ. IEEE Sys- tems, Man, and Cybernetics Society, 2012,42 (4) : 1083-1142.
  • 7PEDRYCZ W, HIROTA K, SESSA S. A decomposition o{ fuzzy relationsFJ:. IEEE Systems, Man, and Cybernetics Society, 2001,31(4) : 657-663.
  • 8孔金生,李文艺.基于模糊集合的证据理论信息融合方法[J].计算机工程与应用,2008,44(20):152-154. 被引量:19
  • 9张洪海,胡明华,陈世林.机场进离场流量协同分配策略[J].南京航空航天大学学报,2008,40(5):641-645. 被引量:13
  • 10于洪,李转运.基于遗忘曲线的协同过滤推荐算法[J].南京大学学报(自然科学版),2010,46(5):520-527. 被引量:73

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部