期刊文献+

一个新的李代数,新的非线性可积耦合及其哈密顿结构(英文) 被引量:3

A New Lie Algebra Structure,New Nonlinear Integrable Couplings and its Hamiltonian Structures
下载PDF
导出
摘要 通过引入一个新的显式李代数得到了一个孤子族的非线性可积耦合,利用相应圈代数上的变分恒等式给出了非线性可积耦合的哈密尔顿结构.本文所给的方法也可以应用于其它孤子族的非线性可积耦合. A new explicit Lie algebra structure is introduced for which the nonlinear integrable couplings of a soliton hierarchy is obtained.Variational identity over the corresponding loop algebras is used to furnish Hamiltonian structures for the resulting nonlinear integrable couplings.The approach presented in the paper can also provide nonlinear integrable couplings for other soliton hierarchies.
出处 《工程数学学报》 CSCD 北大核心 2014年第3期463-474,共12页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11271008 61072147 11071159) the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
关键词 李代数 变分恒等式 非线性可积耦合 哈密尔顿结构 Lie algebras variational identity nonlinear integrable couplings Hamiltonian structures
  • 相关文献

参考文献2

二级参考文献38

  • 1B. Fussteiner, Applications of Analytic and Geometic Methods to Nonlinear Differential Equations, ed. P.A. Clarkson, Dordrecht Kluwer (1993) p. 125.
  • 2W.X. Ma and B. Fuchssteiner, Chaos, Solitons and Fractals 7 (1996) 1227.
  • 3W.X. Ma, Phys. Lett. A 316 (2003) 72.
  • 4Y.F. Zhang and H.Q. Zhang, J. Math. Phys. 43 (2002) 466.
  • 5G.Z. Tu, J. Math. Phys. 30 (1989) 330.
  • 6T.C. Xia, F.C. You, and D.Y. Chen, Chaos, Solitons and Fractals 27 (2006) 153.
  • 7T.C. Xia, F.C. You, and D.Y. Chen, Chaos, Solitons and Fractals 23 (2005) 1911.
  • 8T.C. Xia and F.C. You, Chaos, Solitons and Fractals 28 (2006) 938.
  • 9F.K. Guo and Y.F. Zhang, J. Phys. A: Math. Gem 38 (2005) 8537.
  • 10W.X. Ma, J. Phys. Soc. Jpn. 72 (2003) 3017.

共引文献4

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部