摘要
通过引入一个新的显式李代数得到了一个孤子族的非线性可积耦合,利用相应圈代数上的变分恒等式给出了非线性可积耦合的哈密尔顿结构.本文所给的方法也可以应用于其它孤子族的非线性可积耦合.
A new explicit Lie algebra structure is introduced for which the nonlinear integrable couplings of a soliton hierarchy is obtained.Variational identity over the corresponding loop algebras is used to furnish Hamiltonian structures for the resulting nonlinear integrable couplings.The approach presented in the paper can also provide nonlinear integrable couplings for other soliton hierarchies.
出处
《工程数学学报》
CSCD
北大核心
2014年第3期463-474,共12页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(11271008
61072147
11071159)
the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
关键词
李代数
变分恒等式
非线性可积耦合
哈密尔顿结构
Lie algebras
variational identity
nonlinear integrable couplings
Hamiltonian structures