期刊文献+

美国大数据专业硕士研究生教育的背景、现状、特色与启示——全美23所知名大学数据分析硕士课程网站及相关信息分析研究 被引量:66

The Status and Suggestions of American Great Universities with Master's Programs in Big Data Analytics
下载PDF
导出
摘要 围绕大数据的开发和应用,美国政府在政策上积极鼓励各大学开展跨学科的大数据专业硕士研究生教育,以培养下一代数据科学家和工程师,企业和研究机构也在积极配合推动。美国目前有超过四十多所大学开设了大数据专业硕士研究生课程,其中有二十多所知名大学的课程内容值得仔细研究,经过深入分析这些课程网站信息,总结出美国大数据专业硕士研究生课程的一些特点。文章还介绍了美国专家学者关于大数据的最新观点,以及美国各大学大数据专业硕士研究生课程设置内容,结合中国大数据专业硕士研究生教育现状等几个方面的问题进行研究,从而为中国的大数据专业硕士教育提供非常有价值的参考。 As the development and application of big data increases, the U.S. government has actively encouraged universities in policy to carry on interdisciplinary graduate programs to train the next generation of data scientists and engineers. Companies and research institutions are also actively cooperating to promote such programs. In the United States, more than forty universities have started their Master's Programs in Big Data Analytics; there are currently over twenty great Programs available at these universities, all of which deserve careful researching. After in-depth analysis of these Programs" websites, sharing the view of American experts on big data will provide a valuable reference for the Chinese Master's Programs in Big Data Analytic
作者 何海地
出处 《图书与情报》 CSSCI 北大核心 2014年第2期48-56,共9页 Library & Information
关键词 美国 大数据 硕士研究生课程 数据分析 商业数据分析 研究生教育 The United States Big Data Master's Programs data science business analytics graduate program
  • 相关文献

二级参考文献18

  • 1Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 2Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 3Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 4Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 5Big Data. Nature, 2008, 455(7 209): 1-136.
  • 6Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 7Complexity. Nature Physics, 2012, 8( 1 ).
  • 8Big Data. ERCIM News, 2012, (89).
  • 9David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.
  • 10The 2011 Digital Universe Study: Extracting Value from Chaos. International Data Corporation and EMC, June 2011.

共引文献1603

同被引文献614

引证文献66

二级引证文献689

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部