期刊文献+

超高强钢板多层多道焊温度场有限元分析 被引量:5

Finite element analysis of temperature field in multi- pass welding of ultra high strength steel plate
下载PDF
导出
摘要 针对616超高强钢板焊接出现裂纹等问题,为优化焊接工艺参数,准确提供焊接条件下的温度场,采用Sysweld软件建立了15 mm厚板脉冲MIG多层多道焊有限元分析模型,对多道焊焊缝及热影响区形状尺寸进行计算,并分析比较模拟结果。结果表明,有效热输入功率为3 600 W时,校核热源熔融最佳;距热源最近的特征点温度变化最迅速,最先升到峰值点,高温驻留时间最长;道间温度伴随焊接道次增多而逐步上升,控制道间温度可预防热影响区晶粒粗大,有助于改善接头组织。 Considering the cracks problem in the welding of 616 ultra- high strength steel, the finite element model for 15mm thick muhi - pass wehting of pulse MIG was developed to optimize the welding parameters and provide the temperature fieht accurately. The shapes and sizes of muhi - pass welding bead and HAZ were simulated by SYSWELD software, in addition, the simulation results were analyzed and compared. The results show that the checked heat source melts the best when effective thermal input power is 3600W. The feature point which is nearest to heat source firstly rises to the peak point with the longest high - temperature dwell time, and its temperature changes the most rapidly. With the weld passes increasing, the interpass temperature rises gradually. The proper interpass temperature could prevent coarse grains in HAZ, which helps to improve joint organization.
出处 《电焊机》 北大核心 2014年第5期202-205,共4页 Electric Welding Machine
关键词 616装甲钢 有限元模拟 多道焊 温度场 616 armor steel finite element simulation multi - pass welding temperature field
  • 相关文献

参考文献2

  • 1张文钺.焊接传热学[M].北京:机械工业出版社,1987..
  • 2Goldak J,Chakravarti A,Bibhy M.A new finite element model for welding heat sources [J].Metallurgical Trans-actions,1984(15):229-305.

共引文献17

同被引文献39

  • 1崔海舰.煤矿液压支架结构件焊接工艺初探[J].中国石油和化工标准与质量,2020,40(17):224-225. 被引量:6
  • 2Josefson B L. Stress Redistribution During Local An- nealing of a Multi-pass Butt-welded Pipe[J]. Journal of Pressure Vessel Technology, 19 8 6, 10 8 ( 2 ) : 12 5- 130.
  • 3Karlsson R I,Josefson B L. Three-dimensional Finite Element Analysis of Temperatures and Stresses in a Single-pass Butt-welded Pipe[J]. Journal of Pressure Vessel Technology, 1990,112(1): 76-84.
  • 4Yaghi A, Hyde T H, Becker A A, et al. Residual Stress Simulation in Thin and Thick-walled Stainless Steel Pipe Welds Including Pipe Diameter Effects[J]. International Journal of Pressure Vessels and Piping, 2006,83(11-12) :864-874.
  • 5Jiang Wenchun,Luo Yun,Wang Huai, et al. Effect of Impact Pressure on Reducing the Weld Residual Stress by Water Jet Peening in Repair Weld to 304 Stainless Steel Clad Plate[J]. Journal of Pressure Vessel Tech- nology,2015,137(3) :031401-1-6.
  • 6Yaghi A H, Hyde T H, Becket A A, et al. Residual Stress Simulation in Welded Sections of P91 Pipes[J]. Journal of Materials Processing Technology, 2005,167 (2-3) :480-487.
  • 7Brickstad B,Josefson B L. A Parametric Study of Re- sidual Stresses in Multi-pass Butt-welded Stainless Steel Pipes[J]. Int. J. Pressure Vessels Piping, 1998, 75(1) :11-25.
  • 8Josefson B L. Prediction of Residual Stresses and Dis- tortions in Welded Structures[J]. ASME Journal of Offshore Mechanics and Arctic Engineering, 1993,115 (1) :52-57.
  • 9Mirzaee-Sisana A, Fookesa A J, Trumana C E, et al. Residual Stress Measurement in a Repair Welded Header in the As-welded Condition and after Advanced Post Weld Treatment [J]. International Journal ofPressure Vessels and Piping,2007,84(5) :265-273.
  • 10Lars-Erik Lindgren. Computational Welding Mechan- ics- Thermomechanical and Microstructural Simula- tions[M]. Cambridge:Woodhead Publishing Limited, 2007.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部