期刊文献+

具有时滞和分段常数变量的比率型密度制约模型的分支分析

The bifurcations of ratio-dependent density restriction model with piecewise constant arguments and time delay
下载PDF
导出
摘要 讨论了具有分段常数变量和时滞的比率型密度制约单种群模型的稳定性及分支等问题,运用特征值理论和Jury判据给出模型正平衡态局部渐近稳定的充分条件;利用分支理论及中心流形定理,得到了Flip分支及N-S分支存在的条件,并讨论了N-S分支方向和稳定性;通过实例和数值模拟验证了定理条件与结论的可实现性. The stability and bifurcations of a single population of ratio-dependent density restriction model with piecewise constant arguments and time delay are investigated.The local stability sufficient conditions of the positive equilibrium are derived by using the theory of characteristic value and Jury criterion.Furthermore the range of the parameter for existence of Neimark-Sacker bifurcation and Flip bifurcation of this model and the direction,stability of N-S bifurcation are achieved by using the bifurcation theory and the center manifold theorem;finally,some examples and numerical simulations are presented to illustrate the correctness and realizability of our theoretical results.
出处 《陕西科技大学学报(自然科学版)》 2014年第3期168-172,共5页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(10871122 11171199) 中央高校基本科研专项基金项目(JK201302004 JK201302006)
关键词 时滞 具有分段常数变量 比率型密度制约 稳定性 Flip分支 N-S分支 time delay piecewise constant arguments ratio-dependent density restriction stability Neimark-Sacker bifurcation Flip bifurcation
  • 相关文献

参考文献16

二级参考文献45

  • 1Wang Youbin,Yan Jurang.NECESSARY AND SUFFICIENT CONDITIONS FOR THE OSCILLATION OF A DELAY LOGISTIC EQUATION WITH CONTINUOUS AND PIECEWISE CONSTANT ARGUMENTS[J].Annals of Differential Equations,2005,21(3):435-438. 被引量:4
  • 2杨颖茶,陈斯养.一类二阶非自治时滞微分方程的线性振动[J].陕西科技大学学报(自然科学版),2006,24(5):119-123. 被引量:2
  • 3R. M. May. Stability and Complexity in Model Ecosystems[M].Princeton Univ. Press, New Jersey, U. S. A, 1973.
  • 4Y. song. Y. peng. Stability and bifurcation analysis on logistic nodel with discrete and distribute delays[J]. Appl. Math. Comput. , 2006,(181): 1 745-1 757.
  • 5B. Hassard, D. Kazarinoff, Y. wan. Theory and Applications of Hopf Bifurcation[M]. Cambridge University Press,Canbridge, 1981.
  • 6Aying Wan, Junjie Wei. Hopf bifurcation analysis of a food-limited population model with delay[J]. J. Math. Anal. Appl. ,2010, (11):1 087-1 095.
  • 7R. M. May. Time delay versus stability in population models with two and three trophie levels[J]. Ecology, 1973, (4) 315-325.
  • 8薛定宇,陈阳泉.高等应用数学问题的Matlab求解(第二版)[M].北京:清华大学出版社,2009.
  • 9Mihaly Pituk. Linearized oscillation in a nonautonomous scalar delay differential equation[J]. Applied Mathematics Letters, 2006,(19) : 320-325.
  • 10H. EI-Owaidy, H.Y. Mohamed. Linearized oscillation for non-linear systems of delay differential equations[J]. Applied Mathematics and Computation, 2003, (142) : 17-21.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部