期刊文献+

一类捕食模型的持续生存条件 被引量:1

A Class of Predator-prey Model of Continuous Conditions of Survival
下载PDF
导出
摘要 根据综合害虫管理,提出一类具有脉冲效应的捕食模型并进行分析,利用Floquet乘子理论,给出系统持续生存的条件. According to the fact integrated pest management(IPM),a class of predator-prey model with impulsive effect is proposed and analyzed.By using Floquet theorem,conditions for permanence of the system are given.
作者 安莹
出处 《太原师范学院学报(自然科学版)》 2014年第1期23-25,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 捕食-食饵模型 脉冲 周期解 predator-prey model impulsive effect floquet theorem
  • 相关文献

参考文献4

  • 1安莹.一类捕食模型的动力行为[J].吕梁教育学院学报,2012,29(1):58-60. 被引量:2
  • 2Liu Bing,Zhang Yujuan. Chen Lansun. The dynamical behaviors of a Lotka Volterra Predator prey model concerning integrated pest management[J]. Nonlinear Analysis.- Real World Aplications, 2005, (6): 227-243.
  • 3张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 4张玉娟.The application of impulsive differential equation in mathematical modelling of population ecology management[D].大连:大连理工大学,2004.

二级参考文献17

  • 1张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 2Pandit S G. On the stability of impulsively perturbed differential systems. Bull. Austral Math.Soc., 1977, 17: 423-432.
  • 3Simeonov P S, Bainov D D. The second method of Liapunov for systems with impulsive effect.Tamkang J. Math., 1985, 16: 19-40.
  • 4Kulev G K, Bainov D D. On the asymptotic stability of systems with impulses by direct method of Lyapunov. J. Math. Anal. Appl., 1989, 140: 324-340.
  • 5Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses.Math. Biosci., 1998, 149: 23-36.
  • 6Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull. Math.Biol., 1998, 60: 1-26.
  • 7Hirstova S G, Bainov D D. Existence of periodic solution of nonlinear systems of differential equations with impulsive effect. J. Math. Anal. Appl., 1985, 125: 192-202.
  • 8Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math. Comprt. Modelling, 1997, 26: 59-72.
  • 9Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equation. World Science, Singapore, 1989.
  • 10Barclay H J. Model for pest control using predator release, habitat management and pesticide release in combination. J. Applied Ecology, 1982, 19: 337-348.

共引文献30

同被引文献2

  • 1Lakmeche A,Arino O.Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatmont. Dynamics of Continuous Discrete and Impulsive Systems . 2000
  • 2安莹.一类捕食模型的动力行为[J].吕梁教育学院学报,2012,29(1):58-60. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部