期刊文献+

Cl^-浓度对硫酸盐还原菌体系中316L不锈钢腐蚀行为的影响 被引量:9

Effect of Chloride Concentration in Sulphate-Reducing Bacteria Medium on Corrosion Behavior of 316L Stainless Steel
下载PDF
导出
摘要 油田采出水中Cl-含量是影响材料微生物腐蚀的重要因素,以往对此研究较少。通过电化学阻抗谱(EIS)、扫描电镜(SEM)、能谱(EDS)及荧光显微镜等研究了Cl-浓度分别为200,150,100,30,6 g/L的模拟油田采出水介质中硫酸盐还原菌(SRB)对316L不锈钢腐蚀行为的影响。结果表明:在30 g/L Cl-时316L不锈钢表面细菌附着量明显高于其他盐度,Cl-浓度高于100 g/L时不锈钢表面基本无细菌附着;在低盐度含SRB介质中,试样电荷转移电阻(Rct)较小,耐腐蚀性能较低;在低盐度下试样表面生物膜疏松多孔,有胞外聚合物、腐蚀产物和代谢产物形成,表面的Fe含量明显低于高盐度介质,而C含量较高,SRB的存在增大了试样的腐蚀溶解速度。 The microbiologically influenced corrosion behavior of 316 L stainless steel in sulphate-reducing bacteria( SRB) inoculated Postgate's C( PGC) containing 200,150,100,30,6 g /L Cl-was evaluated based on electrochemical impedance spectroscopy testing as well as analyses of scanning electron microscopy,energy dispersive spectroscopy and fluorescence microscopy. Results showed that when the concentration of Cl-was 30 g /L,the amount of bacteria attached to the steel surface was significantly higher. When Cl-concentration was higher than 100 g /L,basically no SRB was attached to the steel surface. Besides,the charge transfer resistance of the steel samples exposed to SRB inoculated PGC with low salinity was lower. Moreover,the marine biofilms on the steel surface immersed in low salinity conditions were more loose and porous. In the low salinity conditions,the concentration of Fe in the surface film was much lower,and the concentration of C was significantly higher. In general,SRB promoted the corrosion and dissolution rate of the steel sample.
出处 《材料保护》 CSCD 北大核心 2014年第5期57-60,共4页 Materials Protection
基金 中国科学院重要方向资助项目(KZCX2-EW-205)资助
关键词 硫酸盐还原菌 腐蚀 Cl-浓度 316L不锈钢 电化学行为 油田采出水 sulphate-reducing bacteria corrosion behavior Cl- concentration 316L stainless steel
  • 相关文献

参考文献11

  • 1吴文菲,刘波,李红军,李松,陈泽智.pH、盐度对微生物还原硫酸盐的影响研究[J].环境工程学报,2011,5(11):2527-2531. 被引量:27
  • 2邓述波,周抚生,余刚,蒋展鹏,陈忠喜,张瑞泉,马文铁.油田采出水的特性及处理技术[J].工业水处理,2000,20(7):10-12. 被引量:115
  • 3黄廷林,赵建伟,李仲恺,吴宗福.陇东油田采出水系统的腐蚀及防护[J].西安建筑科技大学学报(自然科学版),2002,34(4):320-324. 被引量:17
  • 4Ringas C,Robinson F P A.Corrosion of stainless steel by sulphate-reducing bacteria-electrochemical techniques [ J ].Corrosion,1988,44(6):386-396.
  • 5周书峰,尹秀峰,周卫国,孙成,韩恩厚.在不同Cl^-含量土壤中硫酸盐还原菌对Q235钢腐蚀的影响[J].腐蚀科学与防护技术,2004,16(4):199-202. 被引量:13
  • 6Beech I B,Sunner J.Biocorrosion:towards understanding in-teractions between biofilms and metals[ J].Current Opinion in Biotechnology,2004,15(3):181-186.
  • 7Duan J,Wu S,Zhang X,et al.Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [ J ].Electrochimica Acta,2008,54(1):22-28.
  • 8Venzlaff H,Enning D,Srinivasan J,et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [ J ].Corrosion Science,2013,66:88-96.
  • 9Kinzler K,Gehrke T,Telegdi J,et al.Bioleaching A result of inteffacial processes caused by extracellular poly-meric substances(EPS)[J].Hydrometallurgy,2003,71(1):83-88.
  • 10Rohwerder T,Gehrke T,Kinzler K,et al.Bioleaching re-view part A [ J ].Applied Microbiology and Bioteehnology,2003,63(3):239-248.

二级参考文献34

  • 1王开军.土壤盐分与金属电极电位的变化[J].腐蚀科学与防护技术,1994,6(4):358-360. 被引量:7
  • 2银耀德,高英,张淑泉,李洪锡.土壤中阴离子对20钢腐蚀的研究[J].腐蚀科学与防护技术,1990,2(2):22-24. 被引量:16
  • 3Feijoo G. , Soto M. , Mendez R. , et al. Sodium inhibition in the anaerobic digestion process: Antagonism and adapta- tion phenomena. Enzyme Microb. Tech. , 1995, 17 (21) : 180-188.
  • 4LensP. N. L. , KlijnR. , VanLierJ. B., etal. Effect of specific gas loading rate on thermophilic (55℃) acidifying (pH 6) and sulfate reducing granular sludge reactors. Wa- ter Res. , 2003, 37 (5) : 1033-1047.
  • 5Lopes S. I. C. , Sulistyawati I. , Capela M. I. , et al. Low pH (6, 5 and 4) sulfate reduction during the acidification of sucrose under thermophilic (55 ℃ ) conditions. ProcessBiochemistry, 2007, 42 (4) : 580-591.
  • 6Jong T. , Parry D. L. Microbial sulfate reduction under se- quentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. , 2006, 40 (13) : 2561- 2571.
  • 7Elliott P. , Ragusa S. , Catcheside D. Growth of SRB under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res., 1998, 32 (12): 3724-3730.
  • 8Oflaherty V. , Lens P. , Leahy B. , et al. Long-term com- petition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Res. , 1998, 32 ( 3 ) : 815 -825.
  • 9Vallero M. V. G. , Hulshoff Pol L. W. , Lettinga G. , et al. Ef-fect of NaCl on thermophilic (55 ℃ ) methanol de- gradeation in sulfate reducing granular sludge reactors. Wa- ter Res. , 2003, 37 (10) : 2269-2280.
  • 10Kondo R. , Nedwell D. B. , Purdy K. J. , et al. Detec- tion and enumeration of sulphate-reducing bacteria in estu- arine sediments. Geomicrobiol. J. , 2004, 21 ( 3 ) : 145-157.

共引文献166

同被引文献216

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部