期刊文献+

基于EMD和RBFNN的地铁辅助逆变器故障检测 被引量:5

Fault Detection for Subway Auxiliary Inverter Based on EMD and RBFNN
下载PDF
导出
摘要 针对地铁辅助逆变器故障信号非平稳的特征,提出了一种基于经验模态分解方法和径向基神经网络的地铁辅助逆变器的故障诊断方法,并应用经验模态分解方法对采集的非平稳的原始信号进行处理,将原始信号分解成多个平稳的本征模函数(intrinsic mode function,IMF),同时,采用K-均值聚类算法确定RBF神经网络的模型参数,并借助径向基神经网络的分类能力对特征向量进行故障检测。仿真结果表明,基于K-均值聚类算法的RBF神经网络,在48个测试样本中有46个正确,准确率为95.8%,高于标准RBF神经网络77.0%的准确率,说明其准确性明显高于标准的径向基神经网络。该研究能够满足地铁辅助逆变器故障检测对准确性的要求,可高效识别地铁辅助逆变器的故障。 Focusing on the non-stationary characteristics of the fault signal of subway auxiliary inverter, this paper proposes a method, by combining empirical mode decomposition (EMD) with radical basis function (RBF) neural network to diagnose fault for metro auxiliary inverter. Empirical mode decomposition method is applied to analyze original non-stationary signal. The original signal is decomposed into several smooth intrinsic mode functions (IMF). The k-means clustering algorithm is used to determine the param- eters of RBF neural network model. It can detect the faults of feature vector according to the classified a- bility of RBF neural network. According to the analysis results of the fault signal of subway auxiliary inverter, the accuracy of this algorithm is higher than the foundational RBF neural network. The results satisfy the requirement of fault diagnosis of subway auxiliary inverter, and identify the fault efficiently.
出处 《青岛大学学报(工程技术版)》 CAS 2014年第2期43-48,共6页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家科技支撑计划(2011BAG01B05) 山东省基金课题(ZR2011FM008 BS2011DX008) 轨道交通控制与安全国家重点实验室开放课题(RCS2011K005)(北京交通大学)
关键词 EMD 径向基函数 神经网络 K-均值聚类算法 故障检测 EMD RBF neural network K-means clustering algorithm fault diagnosis
  • 相关文献

参考文献7

  • 1Gao Junwei,Yu Jinpeng,Leng Ziwen,et al.The Application of PSO-LSSVM in Fault Diagnosis of Subway Auxiliary Inverter[J].ICICExpress Letters,2013,4(3):777-784.
  • 2Moody J,Darken C.Fast Learning in Networks of Locally-Tuned processing Nnits[J].Neural Computation,1989,1(2):281-294.
  • 3Huang N E,Shen Zheng,Long S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J].Proceedings of the Royal Society,1998,454(1971):903-995.
  • 4Huang N E,Shen Zheng,Long S R.A New View of Nonliear Water Waves:The Hilbert Spectrum[J].Annual Review of Fluid Mechanics,1999,31(1):417-457.
  • 5雷升锴,刘红阳,何嘉,何险峰,薛勤.动态K-均值聚类算法在RBF神经网络中心选取中的应用[J].信息系统工程,2011(6):83-85. 被引量:9
  • 6欧立铭,徐晓刚,王斌.RBF神经网络的C^4ISR系统效能评估[J].火力与指挥控制,2011,36(10):9-10. 被引量:4
  • 7李国勇.智能控制机器MATLAB实现[M].北京:电子工业出版社,2005.

二级参考文献8

共引文献12

同被引文献56

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部