期刊文献+

低场固体NMR研究纳米复合凝胶结构与动力学 被引量:6

Low-Field NMR Studies on the Structure and Dynamics of Nanocomposite Hydrogels
下载PDF
导出
摘要 纳米复合水凝胶复杂的微观结构和动力学决定了其宏观性能,阐明其结构和动力学的非均匀性对揭示凝胶相变机理、认识其宏观物理和化学性质和设计新型高分子凝胶都具有重要意义.通过合成不同粘土含量的系列聚异丙基丙烯酰胺(PNIPAm)/锂藻土纳米复合水凝胶,运用多种先进的低场固体NMR技术详细研究了凝胶微观结构和动力学的非均匀性.首先建立了分析多组分凝胶体系中刚性和柔性高分子组分相对含量的计算方法,然后在不同粘土含量下,通过测量凝胶FID信号和质子T1定量研究了凝胶中刚性和柔性高分子组分的相对含量;通过偶极滤波双量子NMR实验,研究了体系中与交联密度关联的残余偶极作用参数随黏土含量的变化.结果表明:在纳米复合水凝胶中,随着粘土含量的增加,凝胶中聚合物的刚性相增加,而柔性相下降,当粘土含量达到12%(Wclay/Wwater)时体系中的刚性相含量趋于平衡.多量子实验结果表明,随着粘土含量的增加,纳米复合水凝胶中高分子链的残余偶极作用参数逐渐增大,反映了体系中高分子链的受限运动和二维无机纳米片层形成的物理交联密度增大的趋势. The macroscopic properties of soft matters are largely determined by their composition and the molecular mobility of each component. In this work, we used low field solid-state NMR to study the composition and dynamics of nanocomposite hydrogels with different clay contents. It was found that the content of rigid phase increased, while and the content of soft phase decreased with increasing clay content. A turning point of 12%Wclay/Wwater was found, above which the content of rigid phase tended to be a constant. The dipolar coupling constants were measured with double-quantum (DQ) experiments, and the results showed that the confinement of polymer chains and the crosslink density increased with the clay content.
出处 《波谱学杂志》 CAS CSCD 北大核心 2014年第2期172-184,共13页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(21174072) 国家杰出青年科学基金资助项目(20825416)
关键词 低场核磁共振(low-field NMR) 结构与动力学 温敏高分子 聚异丙基丙烯酰胺 纳米复合水凝胶 low-field NMR structure and dynamics temperature-sensitive polymer PNIPAm nanocomposite hydrogels
  • 相关文献

参考文献32

  • 1Schmaljohann D. Thermo- and ph-responsive polymers in drug delivery[J]. Adv Drug Deliver Rev, 2006, 58(15): 1 655 - 1 670.
  • 2Rzaev Z M O, Dinner S, Piskin E. Functional copolymers of n-isopropylacrylamide for bioengineering applications[J]. Prog Polym Sci, 2007, 32(5): 534-595.
  • 3Rowley J A, Madlambayan G, Mooney D J. Alginate hydrogels as synthetic extracellular matrix materials[J]. Biomaterials, 1999, 20(1): 45 - 53.
  • 4Suh J K F, Matthew H W T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review[J]. Biomaterials, 2000, 21(24): 2 589-2 598.
  • 5Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery[J]. Adv Drug Deliver Rev, 2001, 53(3): 321 -339.
  • 6Peppas N A, Hilt J Z, Khademhosseini A, et al. Hydrogels in biology and medicine: From molecular principles to bionanotechnology[J]. Adv Mater, 2006, 18(11): 1 345-1 360.
  • 7Gong J P. Why are double network hydrogels so tough?[J]. Soft Matter, 2010, 6(12): 2 583-2 590.
  • 8Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Adv Mater, 2003, 15(14): 1 155-1 158.
  • 9Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links[J]. Adv Mater, 2001, 13(7): 485 -487.
  • 10Huang T, Xu H G, Jiao K X, et al. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel[J]. Adv Mater, 2007, 19(12): 1 622-1 626.

同被引文献46

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部