期刊文献+

磷酸铁锂的制备及其电化学性能 被引量:1

Preparation and Electrochemical Performance of LiFePO_4
下载PDF
导出
摘要 以LiOH·H2O,FeSO4·7H2O和H3PO4为原料[n(Li)∶n(Fe)∶n(P)=3∶1∶1],采用水热法合成了LiFePO4(P),其结构经XRD,FE-SEM,HR-TEM和SEAD表征。考察了pH值、反应温度、反应时间和表面活性剂对P的结晶度、颗粒形貌、晶粒大小和择优取向的影响。结果表明:在pH为9.27,0.5%的聚乙烯醇为表面活性剂,于150℃反应8 h合成的P表现出规则的片状形貌,衍射峰强I(200)/I(211)为0.492 5;P在垂直b轴方向有一定的择优生长;P在ac面为最大面,b轴方向尺寸最短;采用乙炔黑为导电剂制备的P扣式电池表现出优良的电化学性能,于室温0.1 C倍率充放电,放电比容量为108.3 mAh·g-1;葡萄糖包覆改性后的扣式电池,0.1 C倍率放电比容量为148 mAh·g-1,1 C倍率放电时,放电比容量仍保持在133.9 mAh·g-1左右。 The pure phase LiFePO4(P) was prepared by hydmthermal method using LiOH · H2O,FeSO4 · 7H2O and H3PO4 as the raw materials[n(Li) ∶ n(Fe)∶ n(P) =3 ∶ 1 ∶ 1].The structures were characterized by XRD,FE-SEM,HR-TEM and SEAD.The effect of pH,reaction temperature,reaction time and surfactant on the crystallinity,particle morphology,grain size and optimizing crystal orientation of P were investigated.The results showed that P prepared under 150 ℃ for 8 h using 0.5% polyving akohol as the surfactant in pH of 9.27 shows regular laminated structure and the intensity ratio I(200)/I(211) of the diffraction peak is 0.492 5,which illustrates that the samples preferably cystallized in the perpendicular direction to b axis.The result of SEAD analysis indicated that the sample shows the biggest ac face and shortest b axis.Button cell of P with acetylene black as the conductive additive shows excellent electrochemical performance,the discharge capacity was 108.3 mnAh · g-1 at room temperature at 0.1 C and can reach to 148 mAh · g-1 and remain at 133.9 mAh · g-1 at 1 C after glucose carbon coating.
出处 《合成化学》 CAS CSCD 北大核心 2014年第3期322-326,共5页 Chinese Journal of Synthetic Chemistry
基金 国家大学生创新性实验计划项目 教育部留学回国人员科研启动基金资助项目[(2011)1139] 长沙理工大学电力与交通材料保护湖南省重点实验室开放基金(2013CL07)
关键词 水热法 制备 LIFEPO4 择优生长 包覆改性 充放电性能 hydrothermal method preparation LiFePO4 orientation carbon-coated charge and discharge property
  • 相关文献

参考文献13

  • 1Yang S F, Zavslij P Y, Whittlngham M S. Hydrother- msl synthesis of lithium iron phosphate cathodes [ J ]. FAectrochem Commun ,2001,3 (9) :505 - 508.
  • 2Yang S F, Song Y N, Zavalij P Y. Reactivity stability and electrochemical behavior of lithium iron phosphates [ J ]. Elect rochem Commun, 2002,4 ( 3 ) : 239 - 244.
  • 3Kaoru Dokko, Shohei Koizuml, Hiroyuki Nakano, et al. Particle morphology, crystal orientation, and elec- trochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K[ J]. Mater Chem,2007, 17:4803 - 4810.
  • 4Yang Xia. Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architectures for high-per- formance lithium-ion batteries [ J ]. Journal of Power Sources, 2011,196 : 5651 - 5658.
  • 5John B. Goodenough, monodisperse porous LiFeP04 Microspheres for a high power Li-Ion battery cathode [ J]. J Am Chem Soc ,2011,133:2132 - 2135.
  • 6孙杨.水热法制备LiFePO_4及其电化学性能的研究[J].吉林化工学院学报,2010,27(2):14-16. 被引量:3
  • 7Ou Xiuqin. Temperature-dependent crystallinity and mar- phology of LiFePO4 prepared by hydrothermal synthesis [ J]. Cite this:J Mater Chem,2012,22:9064-9068.
  • 8Fci Tong, Mindong Chen, Guiqing Li, etal. Synergism of ionic liquid and surfactant molecules in the growth d LiFePO4 nanorods and the electrochenical perforrrumces [J]. Power Sources,2012,202:384 - 388.
  • 9J J Chen, M S Whittingham. Hydrothermal synthesis of lithium iron phosphate [ J ]. Electrochem Commun, 2006.8 : 855 - 858.
  • 10Z L Wang, S R Su, C Y Yu, et al. Synthesises,char- acterizations and electrochemical properties of spheri- cal-like LiFePO4 by hydrothermal method [ J ]. Power Sources,2008,184:633 - 636.

二级参考文献6

  • 1M.Takahashi,H.Ohtsuka,K.Akuto et al.Confirmation of Long-term Cyclability and High Thermal Stability of LiFePO4 in Prismatic Lithium-ion Cells[J].J Electrochem Soc,2005,152 (5):899-904.
  • 2C.Delacourt,L.Laffont,R.Bouchet et al.Toward Understanding of Electrical Limitations (electronic,ionic) in LiMPO4(M =Fe,Mn) Electrode Materials[J].Electrochem Soc,2005,152 (5):913-921.
  • 3R.Dominko,J.M.Goupil,M.Bele et al.Impact of LiFePO4/C Composites Porosity on Their Electrochemical Performance[J].J Electrochem Soc,2005,152(5):858-863.
  • 4F.Sylvain,L.C Frederic.,B.Carole et al.Comparison Between Different LiFePO4 Synthesis Routes and Their Influence on its Physico-chemical Properties[J].J Power Sources,2003,119-121:252-257.
  • 5F.Croce,D A.Apifanio,J.Hassoun et al.A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode[J].Electrochemical and Solid-State Letters,2002,5(3):47-50.
  • 6S.Yang,P.Y.Zavalij,M.S.Whittingham.Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes[J].Electrochemistry Communications,2001,3(9):505-508.

共引文献2

同被引文献10

  • 1M. Armand. In materials for advanced batteries(G w. Murphy, 3. Broodhead, B. C. It. Steele,Editors) [M]. New York: Plenum Press, 1980: 145.
  • 2A. K. Padhi, K. S. Naanjundaswamy, C. Masquelier, et al..Phosphon-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of Electrochemical Society, 1997, 144(4): 1188-1194.
  • 3M. Winter, J. iithiation of and composites O. Besenhard. Electrochemical till and tin-based intermetallics [J]. Electrochimica Acta, 199945(1-2) : 31-50.
  • 4M. S. Whittingham. Lithium batteries and cathode materials[J]. Chem. Rev, 2004, 104(10): 4271-4031.
  • 5A. S. Andersson, J. O. Thomas. The source of first-cycle capacity loss in LiFePO, [J]. J Power Sources. 2001. 97-98:498-502.
  • 6D. Choi, P. N. Kumta. Surfactant based sol-gel approach to nanostructured LiFePO4for high rate Li-ion batteries[J]. Journal of Power Sources, 2007, 163(2): 1064-1069.
  • 7XuZhihui, Xu Liang, Lai Qiongyu, et al. A PEG assisted sol-gel synthesis of LiFeP04 as cathodic material for lithium ion cell[J]. Materials Research Bulletin, 2007, 42:883-891.
  • 8王思敏,郑明森,董全峰.纳米级LiFePO_4材料的水热模板法合成及其性能研究[J].电化学,2008,14(4):365-368. 被引量:9
  • 9张金利,杨赛,刘媛媛,舒进波,李韡.表面活性剂对磷酸铁锂材料性能的影响研究[J].化工新型材料,2013,41(6):140-142. 被引量:5
  • 10张世超.锂离子电池关键材料的现状与发展[J].新材料产业,2004(2):32-40. 被引量:23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部