期刊文献+

SEDS工艺制备丝素纳米颗粒及其表征 被引量:4

Preparation and characterization of silk fibroin nanoparticles by SEDS process
下载PDF
导出
摘要 以丝素蛋白为原料,以六氟异丙醇为溶剂,采用超临界流体强制分散溶液(SEDS)工艺制备了丝素纳米颗粒。单因素实验考察了压力、溶液浓度、溶液流速和CO2流速等因素对丝素纳米颗粒平均粒径分布的影响,并通过Zeta电位、HS-GC、FTIR、XRD和DSC等技术手段对制备的丝素纳米颗粒进行了表征。动态激光光散射仪检测结果表明:随压力、溶液浓度和流速的增大,丝素纳米颗粒平均粒径增大;随CO2流速的增大,丝素纳米颗粒平均粒径减小,最小达到298nm。丝素纳米颗粒Zeta电位为-39mV。HS-GC表明丝素纳米颗粒有机溶剂残留量为20μg/L。FTIR表明经SEDS工艺处理后丝素化学结构和官能团不会发生变化。XRD和DSC显示经SEDS工艺处理后丝素内部分子结构发生重排,由无规则卷曲向β折叠转换。 Using silk fibroin as raw material and 1,1,1,3,3,3-hexafluoro-2-propanol as solvent,the solution-enhanced dispersion by supercritical fluid (SEDS) process was used to prepare silk fibroin nanoparticles. The influences of pressure,solution concentration,solution velocity and CO2 velocity on particle size and particle size distribution of nanoparticles were investigated;the Zeta potential, Headspace gas chromatography (HS-GC),Fourier transform infrared spectroscopy (FTIR),X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were also used to characterize the resulting nanoparticles. The results of dynamic laser light scattering detection show that the particle size of silk fibroin nanoparticles increases with the increase of pressure,solution concentration and solution velocity;while the opposite phenomenon is observed for the CO2 velocity,and the minimum particles size is 298nm. The Zeta potential of silk nanoparticles is-39mV. The results of HS-GC show the organic solvent residue of silk nanoparticles is 20μg/L. After SEDS process,the results of FTIR show that chemical structure and functional group of the silk fibroin do not change,however,the results of XRD and DSC indicate that the secondary structure shifts from random coil toβ-sheet.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第6期1506-1512,共7页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(31170939 81171471 51103049) 福建省科技计划(2013Y2002)项目
关键词 丝素 超临界流体强制分散溶液 纳米颗粒 制备 表征 silk fibroin solution-enhanced dispersion by supercritical fluid nanoparticles
  • 相关文献

参考文献35

  • 1党婷婷,陈爱政,王士斌.丝素蛋白微球作为药物缓释载体的研究进展[J].化工进展,2012,31(7):1587-1591. 被引量:9
  • 2Numata K, Kaplan D L. Silk-based delivery systems of bioactive molecules[J]. Advanced Drug Delivery Reviews, 2010, 62 (15): 1497-1508.
  • 3Kundu B, Saha P, Datta K, et al. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overespressed HepG2 cells[J]. Biomaterials, 2013, 34 (37): 9462-9474.
  • 4Kundu J, Poole-Warren LA, Martens P, et al. Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs[J].ActaBiomaterialia, 2012, 8 (5): 1720-1729.
  • 5Zhang Y F, Wu C T, Luo T, et al. Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration [J]. Bone, 2012, 51 (4): 704-713.
  • 6Wenk E, Merkle H P, Meinel L. Silk fibroin as a vehicle for drug delivery applications[J]. Journal of Controlled Release, 2011, 150 (2): 128-141.
  • 7Imsombut T, Srisuwan Y, Srihanam P, et al. Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method[J]. Powder Technology, 2010, 203 (3): 603-608.
  • 8Wang X Q, Yucel T, Lu Q, et al. Silk nanospheres and microspheres from silk/pva blend films for drug delivery[J]. Biomaterials, 2010, 31 (6): 1025-1035.
  • 9Gholami A, Tavanai H, Moradi A R. Production of fibroin nanopowder through electrospraying[J]. Journal of Nanoparticle Research, 2011, 13 (5): 2089-2098.
  • 10Chung T W, Chang C H, Ho C W. Incorporating chitosan (CS) and TPP into silk fibroin (SF) in fabricating spray-dried microparticles prolongs the release of a hydrophilic drug[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42 (4): 592-597.

二级参考文献160

  • 1王鈜艳,刘宗章,张敏华.超临界抗溶剂技术及其在药物方面的应用[J].化工进展,2004,23(7):705-709. 被引量:7
  • 2闻荻江,王辉,朱新生,孙建平.丝素蛋白的构象与结晶性[J].纺织学报,2005,26(1):110-112. 被引量:13
  • 3滕新荣,任杰,顾书英.超临界抗溶剂技术在制备超细微粒中的应用研究进展[J].材料导报,2005,19(F11):207-210. 被引量:4
  • 4Shariati A,Peters C J.Recent developments in particle design using supercritical fluids[J].Current Opinion in Solid State and Materials Science,2003,7(4-5):371-383.
  • 5Reverchon E,Marco I De,Adami R,et al.Expanded micro-particles by supercritical antisolvent precipitation:Interpretation of results[J].J.Supercrit.Fluids,2008,44(1):98-108.
  • 6Gallagher P M,Coffey M P,Krukonis V J.Gas anti-solvent recrystallization of RDX:Formation of ultrafine particles of a difficult-to-comminute explosive[J].Journal of Supercritical Fluids,1992,5:130-142.
  • 7Yeo D,Lim B,Debenedetti G,et al.Formation of microparticular protein powders using a supercritical fluid antisolvent[J].Biotechnology and Bioengineering,1993,41:341-346.
  • 8Martín A,Bouchard A,Hofland G W,et al.Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation[J].J.Supercrit.Fluids,2007,41(1):126-137.
  • 9Reverchon E,Adami R,Caputo G,et al.Spherical microparticles production by supercritical antisolvent precipitation:Interpretation of results[J].J.Supercrit.Fluids,2008,47(1):70-84.
  • 10Adami R,Osse L S,Huopalahti R,et al.Supercritical antisolvent micronization of PVA by semi-continuous and batch processing[J].J.Supercrit.Fluids,2007,42(2):288-298.

共引文献15

同被引文献22

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部