摘要
协同过滤能够满足用户的偏好,为用户提供个性化的指导,是当前互联网推荐引擎中的核心技术。然而,该技术的发展面临着严重的用户评分稀疏性问题。用户评分历史中包含着丰富的上下文信息,因此该文通过利用两种上下文信息对评分稀疏性问题进行了有益的探索:利用物品之间的层次关联关系挖掘用户的潜在喜好;对用户评分的短期时间段效应进行建模。并提出了基于两种上下文信息的统一模型CICF。通过在Yahoo音乐数据集上的实验表明,CICF相比传统协同过滤算法能够显著提高预测效果;并通过在不同稀疏度的训练集上的实验证实了CICF能够有效地缓解评分稀疏性问题。
Collaborative Filtering (CF) could satisfy users' preferences and provide personalized guidance. As the key techniques in current Internet recommendation engines, however, this technology suffers from severe sparse users' ratings problem. Considering the plenty context information in users' rating histories, this paper utilizes two kinds of context information to address sparsity issue: the effect of hierarchical structure on users' potential preferences and the dynamic effect of user's short term ratings. An integrated model CICF is then proposed based on the two of the features mentioned above. Experimental results on Yahoo! Music ratings show that CICF could significantly im- prove the predication performance compared to baseline method. Furthermore, it is also demonstrated that CICF could effectively mitigate rating sparsity issue.
出处
《中文信息学报》
CSCD
北大核心
2014年第2期122-128,共7页
Journal of Chinese Information Processing
基金
国家自然科学基金(61070111)
中国科学院先导项目(XDA06030200)
关键词
三协同过滤
上下文信息
隐参数模型
collaborative filtering
context information
latent factor model