期刊文献+

CICF:一种基于上下文信息的协同过滤推荐算法 被引量:3

CICF:A Context Information Based Collaborative Filtering Algorithm
下载PDF
导出
摘要 协同过滤能够满足用户的偏好,为用户提供个性化的指导,是当前互联网推荐引擎中的核心技术。然而,该技术的发展面临着严重的用户评分稀疏性问题。用户评分历史中包含着丰富的上下文信息,因此该文通过利用两种上下文信息对评分稀疏性问题进行了有益的探索:利用物品之间的层次关联关系挖掘用户的潜在喜好;对用户评分的短期时间段效应进行建模。并提出了基于两种上下文信息的统一模型CICF。通过在Yahoo音乐数据集上的实验表明,CICF相比传统协同过滤算法能够显著提高预测效果;并通过在不同稀疏度的训练集上的实验证实了CICF能够有效地缓解评分稀疏性问题。 Collaborative Filtering (CF) could satisfy users' preferences and provide personalized guidance. As the key techniques in current Internet recommendation engines, however, this technology suffers from severe sparse users' ratings problem. Considering the plenty context information in users' rating histories, this paper utilizes two kinds of context information to address sparsity issue: the effect of hierarchical structure on users' potential preferences and the dynamic effect of user's short term ratings. An integrated model CICF is then proposed based on the two of the features mentioned above. Experimental results on Yahoo! Music ratings show that CICF could significantly im- prove the predication performance compared to baseline method. Furthermore, it is also demonstrated that CICF could effectively mitigate rating sparsity issue.
出处 《中文信息学报》 CSCD 北大核心 2014年第2期122-128,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61070111) 中国科学院先导项目(XDA06030200)
关键词 三协同过滤 上下文信息 隐参数模型 collaborative filtering context information latent factor model
  • 相关文献

参考文献13

  • 1Badrul Sarwar, George Karypis, Joseph Konstan, et al. Item Based Collaborative Filtering Recommendation Algorithms[C]//Proceedings of WWWl0, 2001: 285- 295.
  • 2Yahoo! Music dataset[DB/OL]. http//kddcup, ya- hoo. com/.
  • 3FZhang, C H Y. A Collaborative Filtering Algorithm Embedded BP Network to Ameliorate Aparsity Issue [C]//Proceedings of International Conference on Ma- chine Learning and Cybernetics. 2005.
  • 4赵琴琴,鲁凯,王斌.SPCF:一种基于内存的传播式协同过滤推荐算法[C]//CCIR2011.
  • 5B M Sarwar, G Karypis, J A K, Riedl J. Application of Dimensionality Reduction in Recommender System Case Study[R]. 2000.
  • 6Y Ding, X Li. Time weight collaborative filtering [C]//Proceedings of 14th ACM International Confer- ence on Information and Knowledge Management (CIKM'04), 2004: 485-492.
  • 7Z Lu, D Agarwal, and S Dhillon. A Spatio-temporal Approach to Collaborative Filtering[C]//Proceedings of 3rd ACM Conference on Recommender Systems, RecSys'09, NY, USA, 2009:13-20.
  • 8Y Koren. Collaborative Filtering with Temporal Dy- namics[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD09, NY, 2009:89-97.
  • 9M Montaner, B Lopez, Josep. A Taxonomy of Rec- ommender Agents on the Internet[J] Artif. Intell. Rev., 2003, 19:285-330.
  • 10Lamere P. Social Tagging and Music Information Re- trieval[J]. Journal of New Music Research, 2008,37 (2) : 101-114.

同被引文献12

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部