期刊文献+

树形算法在电信客户细分中的应用研究

Research on the application of tree algorithm in classification of telecom customers
下载PDF
导出
摘要 树形算法由于其对大量高维数据的有效处理、对噪声点的高容忍度和对知识的有效表示,是最常用的CRM客户细分技术。通过对几类树形算法,包括决策树C4.5算法、决策树CART算法和平衡随机森林BRF算法,在解决电信客户细分问题中的表现进行分析研究,并且选用BP神经网络算法作为树形算法的参照,最终研究得出:平衡随机森林在处理电信客户问题上具有最好的表现。 Due to the effective processing of large amounts of high-dimensional data, high tolerance for noise and effective representation of knowledge, tree algorithm is the most common CRM customer segmentation technique. The performance of tree algorithm, including the C4.5, the CART and the balanced random forest, in solving telecommunication customer segmentation problems is analyzed. BP neural network algorithm is compared. Experiments have shown that balanced random forest has the best performance in dealing with the problem.
作者 罗军 张俊勇
出处 《计算机时代》 2014年第5期1-4,共4页 Computer Era
关键词 决策树 随机森林 BP神经网络 数据预处理 decision tree random forest BP neural network data pre-process
  • 相关文献

参考文献4

二级参考文献25

  • 1张磊,胡春,钱锋.BP算法局部极小问题改进的研究进展[J].工业控制计算机,2004,17(9):33-34. 被引量:17
  • 2褚辉,赖惠成.一种改进的BP神经网络算法及其应用[J].计算机仿真,2007,24(4):75-77. 被引量:53
  • 3[1]Marco Ramoni,Paola Sebastiani.Robust Bayes classifiers[J].Artificial Intelligence,2001,125(1-2):209-226
  • 4[2]Sameer Agarwal.Learning from incomplete data[OL].http://www.cs.ucsd.edu/user/elkan/254springol/sagarwalrep.pdf,2006
  • 5[3]Zoubin Ghahramani,Michael I Jordan.Learning from incomplete data[R].MIT Center for Biological and Computational Learning,Tech Rep:AIM-1509,1994
  • 6[4]R J A Little,D B Rubin.Statistical Analysis with Missing Data[M].Wiley Series in Probability and Mathematical Statistics.New York:Wiley and Sons,1987
  • 7[6]J W Grzymala-Busse,M Fu.A comparison of several approaches to missing attribute values in data mining[C].In:Proc of the 2nd Int'l Conf on Rough Sets and Current Trends in Computing.Berlin:Springer-Verlag,2000.378-385
  • 8[7]David Heckerman.Bayesian networks for data mining[G].In:Data Mining and Knowledge Discovery.Berlin:Springer,1997.79-119
  • 9[8]Nir Friedman,Dan Geiger,Moises Goldszmidt.Bayesian network classifiers[J].Machine Learning,1997,29(2-3):131-163
  • 10Cios K J,Kurgan L A. Trends in Data Mining and Knowledge Discovery. In: Knowledge discovery in advanced information systems, Pal, N. R. , Jain, L. C. , Teoderesku N. eds. Springer,2002

共引文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部