期刊文献+

基于模糊阈值补偿的混合蛙跳算法 被引量:3

Shuffled Frog Leaping Algorithm Based on Fuzzy Threshold Compensation
下载PDF
导出
摘要 针对混合蛙跳算法(SFLA)求解复杂问题时收敛速度慢、优化精度低的缺点,提出一种基于模糊阈值补偿的混合蛙跳算法(FTCSFLA)。在SFLA的基础上,采用模糊分组方法对青蛙分组并改进局部搜索的扰动策略。在族群中定义模糊隶属度、隶属度阈值和补偿系数,利用邻域青蛙之间的分布程度衡量某一青蛙的模糊隶属度。在一次局部搜索中,对族群最差个体按模糊隶属度和隶属度阈值关系给出2种更新方法,设置相应的补偿系数。实验结果表明,隶属度阈值为0.9的FTCSFLA其收敛精度、速度均优于SFLA和隶属度阈值为0.5的FTCSFLA,当隶属度阈值取值在(0.5,0.9]之间时,FTCSFLA的性能达到最优。 To solve the problem of slow convergence speed and low optimization precision of Shuffled Frog Leaping Algorithm (SFLA) in solving complex problems, a Shuffled Frog Leaping Algorithm Based on Fuzzy Threshold Compensation(FTCSFLA) is proposed. The fuzzy grouping idea is introduced to divide different frogs into fuzzy groups, and disturbance strategy in a local search is improved based on the basic SFLA. Each fuzzy group is defined with a total membership threshold and a total compensation coefficient, and each frog is defined with a fuzzy membership, which is scaled with the distribution degree of neighborhood frogs. In a local search, the worst individual is updated by two methods in each group, which is partitioned according to the relation between fuzzy membership and membership threshold. In two methods, a compensation coefficient is set to give a unify expression. Experimental results show that the convergence precision and speed of FTCSFLA which membership threshold is 0.9 is better than SFLA and FTCSFLA which membership threshold is 0.5. The evolution curve shows that the convergence precision and speed of FTCSFLA is the optimum when its membership threshold is between (0.5, 0.9].
出处 《计算机工程》 CAS CSCD 2014年第5期168-172,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61063028) 中国博士后科学基金资助项目(2013M542398) 甘肃省高等学校研究生导师科研基金资助项目(1202-04 1102-05) 甘肃省教育厅信息化战略研究基金资助项目(2011-02) 甘肃省自然科学研究计划基金资助项目(1308RJZA214 1208RJZA133) 甘肃农业大学盛彤笙科技创新基金资助项目(GSAU-STS-1322) 兰州交通大学青年科学基金资助项目(2013032)
关键词 混合蛙跳算法 模糊隶属度 隶属度阈值 补偿系数 模糊分组 扰动策略 优化性能 Shuffled Frog Leaping Algorithm(SFLA) fuzzy membership membership threshold compensation coefficient fuzzygrouping disturbance strategy optimization performance
  • 相关文献

参考文献6

二级参考文献55

  • 1罗红,慕德俊,邓智群,王晓东.网格计算中任务调度研究综述[J].计算机应用研究,2005,22(5):16-19. 被引量:61
  • 2王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 3杨俊杰,周建中,喻菁,吴玮.基于混沌搜索的粒子群优化算法[J].计算机工程与应用,2005,41(16):69-71. 被引量:46
  • 4谭皓,沈春林,李锦.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术,2005,27(8):1471-1474. 被引量:13
  • 5周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 6Eusuff M, Lansey K E. Optimization of waterdistribution network design using the shuffled frog leaping algodthrn[J].Water Resources Planning and Management,2003,129(3):210-225.
  • 7Zhen Ziyang, Wang Daobo, Liu Yuanyuan. Improved shuffled frog leaping algorithm for continuous optimization problem[C]. Trondheim,Norway:IEEE Congress on Evolutionary Computation,2009.
  • 8Zhang Xuncai, Hu Xuemei, Cui Guangzhao, et al.An improved shuffled frog leaping algorithm with cognitive behavior [C]. Chongqing,China:Proceedings of the 7th World Congress on Intelligent Control and Automation,2008.
  • 9Li Yinghai, Zhou Jian-zhong, Zhang Yong-chuan, et al. Novel multiobjective shuffled frog leaping algorithm with application to reservoir flood control operation[J].Journal of Water Resources Planning and Management,2010,136(2):217-226.
  • 10Amiri B, Fathian M, Maroosi A. Application of shuffled frog- leaping algorithm on clustering[J].Intemational Journal of Advanced Manufacturing Technology,2009,45(1-2): 199-209.

共引文献131

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部