期刊文献+

基于多变异个体的多目标差分进化改进算法 被引量:2

Improved Multi-objective Differential Evolution Algorithm Based on Multi-mutation Individuals
下载PDF
导出
摘要 针对多目标差分进化算法在高维函数下收敛速度慢和易早熟的问题,提出一种基于多变异个体的多目标差分进化改进算法。通过在多目标差分进化算法的个体变异及交叉操作中,引入多个变异个体,使得在高维多目标函数情况下,多目标差分进化算法种群可以更好地保持多样性,减少种群陷入局部最优解的可能性,从而提高该算法在高维多目标优化问题环境下,最优值解的搜索速度及全局最优值解的查找能力。实验结果表明,在高维多目标环境下,与标准多目标差分进化算法相比,该算法可以更快速地找到多个目标函数组的非劣最优值解集。 Aiming to the problem of multi-objective Differential Evolution(DE) algorithms which have the characteristics of prematurity and slow convergence speed under high-dimensional situation, this paper proposes an improved multi-objective DE algorithms based on multi-mutation samples. Through using method of introducing multi-mutation individuals into the mutation operator and crossover operator of multi-objective DE algorithm, multi-objective DE algorithm populations can keep diversity, reduce the possibility of falling into local optimal solution, it has guick speed for optimal solution, and the improves the ability finding optimal solution using shorter iteration steps than standard multi-objective differential evolution algorithm. Experimental results show that compared with standarded multi-objective DE algorithms, the improved algorithm can find optimal value effectively in high-dimensional multi-objective environment.
出处 《计算机工程》 CAS CSCD 2014年第5期203-208,215,共7页 Computer Engineering
基金 国家"863"计划基金资助项目(2013AA01A211)
关键词 多目标优化问题 差分进化算法 多变异个体 计算智能 最优值搜索 迭代速度 multi-objective optimization problem Differential Evolution(DE) algorithm multi-mutation individuals computational intelligence optimal value searching iteration speed
  • 相关文献

参考文献10

二级参考文献239

共引文献996

同被引文献31

  • 1Coello C,Pulido G T.Handling Multiple Objectives with Particle Swarm Optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
  • 2Salazar-Lechuga M.Particle Swarm Optimization and Fitness Sharing to Solve Multi-objective Optimization Problems[C]//Proceedings of IEEE CEC’05.Washington D.C.,USA:IEEE Press,2005:1204-1211.
  • 3Zhang Q.MOEA/D:A Multi-objective Evolutio-nary Algorithm Based on Decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
  • 4Tan Y,Jiao Y,Li H,et al.MOEA/D Uniform Design:A New Version of MOEA/D for Optimization Problems with Many Objectives[J].Computers&Operations Research,2013,40(6):1648-1660.
  • 5Sindhya K.A Hybrid Framework for Evolutionary Multi-objective Optimization[J].IEEE Transactions on Evolu-tionary Computation,2013,17(4):495-511.
  • 6Wu Daqing.A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization[J].Discrete Dynamics in Nature and Society,2012,(2012).
  • 7Said M,Ahamed A.Hybrid Periodic Boundary Condition for Particle Swarm Optimization[J].IEEE Transations on Antennas and Propagation,2007,55(11):3251-3256.
  • 8Pratap D K.A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 9Coello C A,Cortes N C.Solving Multi-objective Optimization Problems Using an Artificial Immune System[J].Genetic Programming and Evolvable Machines,2005,(6):163-190.
  • 10Zhan Z H.Multiple Opulations for Multiple Objectives:A Co-evolutionary Technique for Solving Multi-objective Optimization Problems[J].IEEE Transactions on Cybernetics,2013,43(2):445-463.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部