期刊文献+

基于DTW与混合判别特征检测器的手势识别 被引量:7

Gesture Recognition Based on DTW and Combined Discriminative Feature Detector
下载PDF
导出
摘要 在动态手势识别领域,动态时间规整(DTW)算法在消除不同时空表示模式之间的时间差异方面具有优势,但作为一种模板匹配算法,受限于样本库的容量大小并且缺乏统计模型框架训练,其识别效果和稳定性较差,尤其在大数据量、复杂手势和组合手势的情况下。针对上述不足,提出一种基于DTW和混合判别特征检测器(CFDF)的手势识别算法。利用DTW只对手势信号在时域进行规整,通过CFDF将手势特征的概率分布转换成二值的分段线性函数,根据允许的偏差范围分别做归0或归1处理后,再进行二次分类。实验结果表明,该算法通过舍弃无辨识度特征有效地降低了维度和噪声,手势平均识别率可达91.2%,比单独采用DTW的识别算法提高了6.0%。 In the dynamic gesture recognition field, the Dynamic Time Warping(DTW) algorithm, which has advantage in eliminating time differences between different space-time expression modes, is a template matching algorithm in essence, so its performance is limited by the capacity of the sample database and lacking statistical model framework to train. Its recognition result is not satisfactory and stability is poor, especially in the cases of large amount of data, complex gestures and combined gestures. In response to these deficiencies, this paper proposes a gesture recognition algorithm based on DTW and Combined Discriminative Feature Detector(CDFD). It warps gesture signals in the time domain only, uses combined discriminative feature detectors to transform probability distribution of gesture features to binary piecewise linear function and makes zero or one according to the permissible deviation ranges, finally classifies gestures. Experimental results show that this algorithm can discard non-discriminative features to reduce dimensionality and noise, and the gesture average recognition rate reaches 91.2%. Compared with individual DTW algorithm, gesture recognition rate increases by 6.0%.
出处 《计算机工程》 CAS CSCD 2014年第5期216-218,223,共4页 Computer Engineering
关键词 手势识别 动态时间规整 隐马尔可夫模型 归一化 统计模型 混合判别特征检测器 gesture recognition Dynamic Time Warping(DTW) Hidden Markov Model(HMM) normalization statistical model Combined Discriminative Feature Detector(CDFD)
  • 相关文献

参考文献6

二级参考文献62

  • 1王欢良,韩纪庆,李海峰,郑铁然.基于HMM/SVM两级结构的汉语易混淆语音识别[J].模式识别与人工智能,2006,19(5):578-584. 被引量:4
  • 2中国聋人协会.中国手语[M].北京:华夏出版社,1991..
  • 3[1]T.Ahmad,C.J.Taylor,A.Lanitis,T.F.Cootes.Tracking and recognising hand gestures, using statistical shape models.Image and Vision Computing,1997,15:345~352
  • 4[2]Y.Azoz,L.Devi,and R.Sharma.Vision-Based Human Arm Tracking for Gesture Analysis Using Multimodal Constraint Fusion.Proc.1997 Advanced Display Federated Laboratory Symp.,Adelphi,Md.,1997
  • 5[3]David Alan Becker,Sensi.A Real-Time Recognition,Feedback and Training System for T'ai Chi Gestures.(David Alan Becker, Master thesis),MIT Media Lab,May,1997
  • 6[4]A.Bobick,J.Davis.Real-time recognition of activity using temporal templates.Proc.of Third IEEE Workshop on applications of computer vision,Florida,1996,39~42
  • 7[5]G.Bradski,Boon-Lock Yeo,Minerva M.Yeung.Gesture for video content navigation.SPIE 3656 (Proc.of the IS&T/SPIE Conf.on Storage and Retrieval for Image and Video Database VII),San Jose,California,1999,230~242
  • 8[6]Quek F.Unencumbered gestural interaction.IEEE Multimedia,1996:36~47
  • 9[7]R.Cipolla and N.J.Hollinghurst.Human-robot interface by pointing with uncalibrated stereo vision.image and vision computing,Mar.1996,14:171~178
  • 10[8]J.L.Crowley,F.Berard,J.Coutaz.Finger tracking as a input device for augmented reality.Proc.Int'l Workshop on Automatic Face and Gesture Recognition,Zurich,Switzerland,1995,195~200

共引文献189

同被引文献44

引证文献7

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部