期刊文献+

基于有监督降维的人脸识别方法 被引量:3

Face Recognition Method Based on Supervised Dimensionality Reduction
下载PDF
导出
摘要 局部降维方法中存在仅考虑图像的相似信息,不能较好地保持图像的差异信息和像素间的空间结构等问题。为此,提出一种新的有监督降维方法,通过构建局部邻域相似图和局部差异图来刻画图像的局部结构。考虑到像素的空间结构,引入二维离散拉普拉斯图的光滑正则化来约束变换矩阵的平滑性。在Yale和ORL人脸数据库上进行实验验证,结果表明,该降维方法既能保持图像之间的局部结构信息,又能较好地保持图像间的差异信息及像素间的空间结构,并针对人脸图像可以有效提取出具有区分能力的低维特征,具有较高的识别精度。 Traditional dimensionality reduction methods only pay attention to the local similarity information of images. They neglect the diversity information of images and spatial structure of the pixels in the images. Therefore, a new supervised dimensionality reduction method is proposed, which constructs the local similarity graph and local diversity graph to characterize the local structure of images. Furthermore, a 2D Discretized Laplacian Smooth regularization by exploiting the spatial structure of the pixels in the images is introduced into the objective function. The method effectively maintains the local structure information between images and maintains the diversity information between images and spatial structure of the pixels in the images. It can effectively extract out the low dimensional feature from the face image. The method is verified on the Yale and ORL database, and experimental results show that the method has high recognition accuracy.
出处 《计算机工程》 CAS CSCD 2014年第5期228-233,共6页 Computer Engineering
基金 吉林省科技发展计划青年科研基金资助项目(201201070) 辽宁省社会科学规划基金资助项目(L13BXW006)
关键词 降维 人脸识别 差异性 局部结构 空间结构 正则化 dimensionality reduction face recognition diversity local structure spatial structure regularization
  • 相关文献

参考文献2

二级参考文献21

  • 1高全学,潘泉,梁彦,张洪才,程咏梅.基于描述特征的人脸识别研究[J].自动化学报,2006,32(3):386-392. 被引量:13
  • 2Yan S C, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 3Murase H, Nayar S K. Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 1995, 14(1): 5-24.
  • 4Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 1991. 586-591.
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 6Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
  • 7Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290(5500): 2268-2269.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 9Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
  • 10He X F, Yan S C, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-240.

共引文献27

同被引文献22

  • 1Belhumcour P N, Hespanha J P, Kriegman D J. Eigenface vs fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 2Swets D L, Weng J J. Using discriminant eigenfeature for image retrieval [-J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 3Li Haifeng, Jiang Tao, Zhang Keshu. Efficient and robust feature extraction by maximum margin criterion [J]. Transactions on Neural Networks, 2006, 17( 1 ) : 1157-1165.
  • 4Gulmezoglu M B, Dzhafarov V, Keskin M, et al. A novel approach to isolatedword recognition[J]. IEEE Transactions on Speech and Audio Processing, 1999, 7(6) : 620-628.
  • 5Gulmezoglu M B, Dzhafarov V, Barkana A. The common vector approch and its relation to principal component analysis [J]. IEEE Transactions on Speech and Audio Processing, 2001,9(6):655-662.
  • 6Cevikalp H, Neamtu M, Wilkes M, et al. Discriminative common vectors for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (1) : 4-13.
  • 7文颖,施鹏飞.一种基于共同向量结合2DPCA的人脸识别方法[J].自动化学报,2009,35(2):202-205. 被引量:14
  • 8程国,丁正生,刘亚亚.基于混合投影峰分析的人眼定位方法[J].五邑大学学报(自然科学版),2010,24(3):50-55. 被引量:9
  • 9程国,刘亚亚,丁正生.基于对称最大间距准则的人脸识别方法[J].科学技术与工程,2012,20(4):809-812. 被引量:4
  • 10刘帅,林克正,孙旭东,程卫月,李静天.基于聚类的SIFT人脸检测算法[J].哈尔滨理工大学学报,2014,19(1):31-35. 被引量:7

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部