摘要
针对集团审计的特性,运用贝叶斯定理构建集团审计模型GUAM,并用伽玛概率分布函数表示先验函数、后验函数与似然函数,用于规范集团各组成部分的重要性水平核算,将模型从单一组织扩展到集团层面的审计,并建立了各组成部分重要性水平与相对可变成本的计算公式,通过各组成部分的资产等标准分配权重,进而确定合适的先验水平使得集团整体的可变成本降低,以达到提高集团审计效率,通过集团层面的控制,使得在完成集团整体目标置信水平的基础上达到最佳审计效果的目的.
According to the characteristic of group audits,this paper develop a general unified assurance and materiality model(GUAM) by Bayes' rule,which audit assurance is interpreted as a subjective probability distribution in this model,and represent priors,posteriors,and likelihoods with gamma probability distributions,to determine component materiality amount,extends the single-component audit risk model to aggregate assurance across multiple components,establishes the formula of component materiality relative total variable cost index,determines the appropriate priors to decrease the variable cost of whole group through the standard to weigh such as assets of components to improve the efficiency of the group audit,so that to achieve the best audit effect based on the group auditor' s overall assurance objective.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第10期124-135,共12页
Mathematics in Practice and Theory