具有分布时滞的高阶非线性中立型微分方程非振动解的存在性
Existence of Nonoscillatory Solutions for Higher-Order Nonlinear Neutral Differential Equations with Distributed Deviating Arguments
摘要
考虑一类具有分布时滞的高阶非线性中立型微分方程,利用Banach压缩映像原理得到了非振动解存在的新的充分条件.
In this paper we consider higher-order nonlinear neutral differential equations with distributed deviating arguments.We use the Banach contraction principle to obtain new sufficient condition for the existence of nonoscillatory solutions.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第10期265-270,共6页
Mathematics in Practice and Theory
基金
山西大同大学科研基金资助(2011K3)
关键词
高阶
带分布时滞
微分方程
非振动解
Banach压缩映像原理
Higher-order
Distributed deviating arguments
differential equation
Nonoscillatory solutions
Banach contraction principle.
参考文献11
-
1Candan T, Dahiya R S. Existence of nonosciUatory solutions of first and second order neutral differential equations with distributed deviating arguments, Journal of the Franklin Institute, 2010, 347: 1309-1316.
-
2Cand .an T. The existence of nonoscillatory solutions of higher order nonliear neutral differential equations, Applied Mathematics Letters, 2012, 25: 412-416.
-
3Zhang W, Feng W, Yah J, Song J. Existence of nonoseillatory solutions of first-order linear neutral delay .differential equations, Comput, Math. Appl, 2005, 49: 1021-1027.
-
4Zhou Y, Zhang B G. Existence of nomoscillatory solutions of higher-order neutral differential equa- tions with positive and negative coeffcients, Appl. Math. Lett, 2002, 15: 867-874.
-
5Yu Y, Wang H. Nonoscillatory solution of second-order nonlinear neutral delay equtions, J. Math. Anal. Appl, 2005, 311: 445-456.
-
6Ozkan Ocalan, Oscillation of neutral equtions with positive and negative coefficients, J. Math. Anal. Appl, 2007, 331: 644-654.
-
7Agaxwal R P, Grace S R, O' Regan D. Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, 2000.
-
8Bainov D D, Mishev D P. Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.
-
9Erbe L H, Kong Q K, Zhang B G. Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., New York, 1995.
-
10I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations With Applications, Clarendon Presss, Oxford, 1991.
-
1刘有军,张建文,燕居让.带分布时滞高阶中立型微分方程非振动解的存在性[J].应用数学学报,2015,38(2):235-243. 被引量:3
-
2刘有军,张建文,燕居让.具有正负系数的高阶微分方程非振动解的存在性[J].系统科学与数学,2014,34(4):495-503. 被引量:3
-
3熊万民.一阶具分布时滞中立型微分方程的振动性[J].海南师范学院学报,2001,14(4):32-36.
-
4熊万民,刘安.具分布时滞中立型微分方程的振动性[J].邵阳师范高等专科学校学报,2000,22(5):15-19.
-
5林诗仲,俞元洪.时滞方程解的振动性和正解的存在性[J].Journal of Mathematical Research and Exposition,2006,26(2):399-405.
-
6王晓霞,仉志余,俞元洪.具有分布时滞的二阶中立型微分方程的渐近性[J].数学的实践与认识,2007,37(20):215-218. 被引量:2
-
7刘颖,朱宏伟.一类具有分布时滞的二阶泛函微分方程周期解[J].哈尔滨商业大学学报(自然科学版),2009,25(1):117-119.
-
8李雪臣,王鸿燕.高阶非线性中立型微分方程解的振动性[J].许昌师专学报,1995,14(3):3-6.
-
9吴红叶.一类高阶非线性中立型微分方程的振动性[J].惠州学院学报,2011,31(3):23-28.
-
10张若军,朱宏伟.具有分布时滞的Duffing型方程周期解的存在性[J].中国海洋大学学报(自然科学版),2007,37(2):219-221. 被引量:1