期刊文献+

具有分布时滞的高阶非线性中立型微分方程非振动解的存在性

Existence of Nonoscillatory Solutions for Higher-Order Nonlinear Neutral Differential Equations with Distributed Deviating Arguments
原文传递
导出
摘要 考虑一类具有分布时滞的高阶非线性中立型微分方程,利用Banach压缩映像原理得到了非振动解存在的新的充分条件. In this paper we consider higher-order nonlinear neutral differential equations with distributed deviating arguments.We use the Banach contraction principle to obtain new sufficient condition for the existence of nonoscillatory solutions.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第10期265-270,共6页 Mathematics in Practice and Theory
基金 山西大同大学科研基金资助(2011K3)
关键词 高阶 带分布时滞 微分方程 非振动解 Banach压缩映像原理 Higher-order Distributed deviating arguments differential equation Nonoscillatory solutions Banach contraction principle.
  • 相关文献

参考文献11

  • 1Candan T, Dahiya R S. Existence of nonosciUatory solutions of first and second order neutral differential equations with distributed deviating arguments, Journal of the Franklin Institute, 2010, 347: 1309-1316.
  • 2Cand .an T. The existence of nonoscillatory solutions of higher order nonliear neutral differential equations, Applied Mathematics Letters, 2012, 25: 412-416.
  • 3Zhang W, Feng W, Yah J, Song J. Existence of nonoseillatory solutions of first-order linear neutral delay .differential equations, Comput, Math. Appl, 2005, 49: 1021-1027.
  • 4Zhou Y, Zhang B G. Existence of nomoscillatory solutions of higher-order neutral differential equa- tions with positive and negative coeffcients, Appl. Math. Lett, 2002, 15: 867-874.
  • 5Yu Y, Wang H. Nonoscillatory solution of second-order nonlinear neutral delay equtions, J. Math. Anal. Appl, 2005, 311: 445-456.
  • 6Ozkan Ocalan, Oscillation of neutral equtions with positive and negative coefficients, J. Math. Anal. Appl, 2007, 331: 644-654.
  • 7Agaxwal R P, Grace S R, O' Regan D. Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, 2000.
  • 8Bainov D D, Mishev D P. Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, 1991.
  • 9Erbe L H, Kong Q K, Zhang B G. Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., New York, 1995.
  • 10I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations With Applications, Clarendon Presss, Oxford, 1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部