期刊文献+

环面上Z_+~k-作用的Friedland熵的计算公式

A formula of Friedland's entropy for Z_+~k -actions on tori
原文传递
导出
摘要 本文对环面上Z_k^+-作用的Friedland熵进行研究.针对由两两不同的可交换非奇异整数矩阵诱导的环面上的Z_k^+-作用,运用与之相关联的斜积系统的相对变分原理和拓扑压等工具,得到Friedland熵的计算公式. In this paper, Friedland’s entropy for Z_+~k -actions on tori is investigated. For a Z_+~k -action on torus generated by pairwise different, commuting non-singular integer matrices, a formula of Friedland’s entropy is obtained via the relative variational principle for the related skew product transformation and topological pressure.
出处 《中国科学:数学》 CSCD 北大核心 2014年第6期701-709,共9页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11371120和11271278) 教育部新世纪优秀人才支持计划(批准号:11-0935) 河北省自然科学基金(批准号:A2014205154) 河北省高校百名优秀创新人才支持计划(Ⅱ)(批准号:BR2-219)资助项目
关键词 Friedland熵 Z_k^+-作用 环面 斜积 变分原理 Friedland’s entropy Z_+~k -action torus skew product pressure variational principle
  • 相关文献

参考文献13

  • 1Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. New York: Cambridge University Press, 1995.
  • 2Ruelle D, Statistical mechanics on a compact set with Zv-action satisfying expansiveness and specification. Trans Amer Math Soc, 1973, 185:237-251.
  • 3Priedland S. Entropy of graphs, semi-groups and groups. In: Ergodic Theory of Zd-actions. Pollicott M, Schmidt K, eds. London Math Soc Lecture Note Ser 228. Cambridge: Cambridge University Press, 1996, 319-343.
  • 4Geller W, Pollicott M. An entropy for Z2-actions with finite entropy generators. Fund Math, 1998, 157:209-220.
  • 5Zhu Y, Zhang W. On an entropy of Zk+-actions. Acta Math Sinica Chin Ser, 2014, 30:467-480.
  • 6Zhang W, Zhang J. The upper bounds of Friedland's entropy for certain Zk+-actions. Dyn Syst, 2014, 29:67-77.
  • 7Einsiedler M, Lind D. Algebraic Zd-actions on entropy rank one. Trans Amer Math Soc, 2004, 356:1799-1831.
  • 8Zhu Y, Liu Z, Xu X, et al. Entropy of nonautonomous dynamical systems. J Korean Math Soc, 2012, 49:165-185.
  • 9Ledrappier F, Walters P. A relativised variational principle for continuous transformations. J Lond Math Soc (2) 1977, 16:568-576.
  • 10Schmidt K. Dynamical Systems of Algebraic Origin. New York, Berlin: Birkhauser-Verlag, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部