期刊文献+

最大度为5的图的Alcuin数 被引量:2

The Alcuin number of graphs with maximum degree five
原文传递
导出
摘要 1000多年前,英国著名学者Alcuin曾提出过一个古老的渡河问题,即狼、羊和卷心菜的渡河问题.最近,Prisner和Csorba等人把这一问题推广到任意的"冲突图"G=(V,E)上,考虑了一类情况更一般的运输计划问题.现在监管者欲运输V中的所有"物品/点"渡河,这里V的两个点邻接当且仅当这两个点为冲突点.冲突点是指不能在无人监管的情况下留在一起的点.特别地,Alcuin渡河问题可转化成"冲突路"P_3上是否存在可行运输方案问题.图G的Alcuin数是指图G具有可行运输方案(即把V的点代表的"物品"全部运到河对岸)时船的最小容量.最大度为5且覆盖数至少为5的图和最大度Δ(G)≤4且覆盖数不小于Δ(G)-1的图的Alcuin数已经被确定.本文给出最大度为4且覆盖数不超过2和最大度为5且覆盖数不超过4的图的Alcuin数.至此,最大度不超过5的图的Alcuin数被完全确定. More than 1000 years ago, Alcuin, a famous scholar, proposed a classical puzzle involving a wolf, a goat and a bunch of cabbages. Recently, Prisner and Csorba considered this transportation planning problem that generalizes Alcuin’s river crossing problem to arbitrary conflict graphs G =(V, E). Now the man has to transport a set V of items/vertices across the river. Two items are connected by an edge in E if they are conflicting and thus cannot be left together without human supervision. In particular, Alcuin’s river crossing problem corresponds to the path P3 with three vertices in above graph-theoretic model. The Alcuin number of a conflict graph is the smallest capacity of a boat for which the graph possesses a feasible schedule. The Alcuin number of a graph with maximum degree Δ(G) 4 and cover number at least Δ(G)- 1 or maximum degree 5 and cover number at least 5 has been determined. In this paper we give the Alcuin number of a graph with maximum degree 4 and cover number at most 2 or maximum degree 5 and cover number at most 4.
出处 《中国科学:数学》 CSCD 北大核心 2014年第6期719-728,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171207)资助项目
关键词 Alcuin数 点覆盖 独立集 覆盖数 Alcuin number vertex cover independent set cover number
  • 相关文献

参考文献9

  • 1Folkerts M (ed), Alcuin F. Propositiones ad Acuendos hvenes (reprinted). Berlin: Springer, 1978.
  • 2Prisner E. Generalizing the wolf-goat-cabbage problem. Electron Notes Discrete Math, 2006, 27:83.
  • 3Csorba P, Hurkens C A J, Woeginger C J. The Alcuin number of a graph and its connections to the vertex cover number. SIAM Rev, 2012, 54:141-154.
  • 4Lampis M, Mitsou V. The ferry cover problem. In: Lecture Notes in Comput Sci, vol. 4475. Berlin: Springer, 2007, 227-239.
  • 5Csorba P, Hurkens C A J, Woeginger C J. The Alcuin number of a graph and its connections to the vertex cover number. SIAM J Discrete Math, 2010, 24:757-769.
  • 6Shan E F, Kang L Y. The Alcuin number of a graph with small maximum degree. SIAM J Discrete Math, in press, 2013.
  • 7Bondy J A, Murty U S R. Graph Theory. Berlin: Springer, 2008.
  • 8冯弢,柴钊,常彦勋.完全3-一致超图的一类填充问题和覆盖问题[J].中国科学:数学,2012,42(6):619-633. 被引量:2
  • 9单而芳,郑大昭,康丽英.正则图的团横贯数的界[J].中国科学(A辑),2007,37(11):1257-1268. 被引量:1

二级参考文献23

  • 1Bondy J A, Murty U S R. Graph Theory with Applications. New York: Elsevier, 1976
  • 2Berge C. Graphs and Hypergraphs. Amsterdam: North-Holland, 1973
  • 3Andreae T, Schughart M, Tuza Z. Clique-transversal sets of line graphs and complements of line graphs. Discrete Math, 88:11-20 (1991)
  • 4Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs. New York: Marcel Dekker, 1998
  • 5Erdos P, Gallai T, Tuza T. Covering the cliques of a graph with vertices. Discrete Math, 108:279-289 (1992)
  • 6Chang G J, Farber M, Tuza Z. Algorithmic aspects of neighbourhood numbers. SIAM J Discrete Math, 6: 24-29 (1993)
  • 7Guruswami V, Rangan C P. Algorithmic aspects of clique-transversal and clique-independent sets. Discrete Appl Math, 100:183-202 (2000)
  • 8Chang M S, Chen Y H, Chang G J, et al. Algorithmic aspects of the generalized clique-transversal problem on chordal graphs. Discrete Appl Math, 66:189-203 (1996)
  • 9Balachandhran V, Nagavamsi P, Ragan C P. Clique transversal and clique independence on comparability graphs. Inform Process Lett, 58:181-184 (1996)
  • 10Lee C M, Chang M S. Distance-hereditary graphs are clique-perfect. Discrete Appl Math, 154:525-536 (2006)

共引文献1

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部