期刊文献+

基于弹流润滑理论的双圆弧齿轮传动多目标优化设计

Multi-objective Optimal Design of a Double Circular Gear Based on the Elastohydrodynamic Lubrication Theory
下载PDF
导出
摘要 为提高双圆弧齿轮传动的综合技术经济指标,依据弹性流体动力润滑的理论,借助于改进的微分进化多目标优化技术及Matlab计算机仿真技术,通过建立同时追求齿面在一定范围内的纵向重合度最大、齿间最小油膜厚度最大及齿轮传动总体积最小的约束多目标优化设计数学模型,对双圆弧齿轮传动进行了有约束多目标优化设计。研究过程及结果表明,改进的微分进化多目标优化技术能有效地缩短产品的设计周期,提高产品的设计质量。 In order to improve the comprehensive technical and economic indicators of a double circular gear, based on the elastohydrodynamic lubrication theory, by use of the modified differential evolution multi-objective optimization technique and MATLAB computer simulation technology, constrained Multi-objective optimization design model was established with the maximum tooth surface longitudinal contact ratio in a certain range and the maximum value of the film smallest thickness between gear teeth and the minimum total volume of gear transmission, constrained multi-objective optimization design of a double circular gear was done. According to the research process and results, by use of the improved differential evolutionary multi-objective optimization technique, the design cycle of product can be shorten effectively, the design quality of product can be improved.
出处 《机电产品开发与创新》 2014年第3期90-92,共3页 Development & Innovation of Machinery & Electrical Products
基金 福建省自然科学基金项目(2012D128) 福建省大学生创新性实验计划项目(sj201210397752)
关键词 微分进化多目标优化算法 纵向重合度 约束多目标优化设计 弹性流体动力润滑 differential evolution multi-objective optimal algorithm longitudinal contact ratio multi-objective optimization design withconstraint elastohydrodynamic lubrication
  • 相关文献

参考文献10

  • 1温诗铸;黄平.摩擦学原理[M]北京:清华大学出版社,2002.
  • 2刘莹,刘洲,肖力天,陈定方.圆弧齿轮弹性流体动力润滑计算[J].南昌大学学报(工科版),1997,19(2):8-11. 被引量:2
  • 3温诗铸.弹性流体动力润滑[M]北京:清华大学出版社,1992.
  • 4陈谌闻.圆弧齿圆柱齿轮传动[M]北京:高等教育出版社,1995.
  • 5H A Abbass. The Self-adaptive Pareto Differential Evolution Algorithm[A].Piscataway:IEEE Service Center,2002.
  • 6N K Madavan. Multiobjective Optimization Using a Pareto Differential Evolution Approach[A].Piscataway:IEEE Service Center,2000.
  • 7F Xue,A C Sanderson,R J Graves. Pareto-based Multi-objective Differentil Evolution[A].Piscataway,NJ:IEEE press,2003.
  • 8张利彪,许相莉,马铭,孙彩堂,周春光.基于微分进化求解多目标优化问题中的退化现象[J].吉林大学学报(工学版),2009,39(4):1041-1046. 被引量:5
  • 9张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 10齿轮手册编委会.齿轮手册[M]北京:机械工业出版社,2005.

二级参考文献18

  • 1雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 2J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms[C].In:John J Grefenstette ed.Proc of the 1st Int'l Conf on Genetic Algorithms.Mahwah:Lawrence Erlbaum Associates,Inc,1985.93-100
  • 3J Horn,N Nafpliotis,D E Goldberg.A niched Pareto genetic algorithm for multiobjective optimization[C].In:Proc of the 1st IEEE Conf on Evolutionary Computation.Piscataway:IEEE Service Center,1994.82-87
  • 4E Zitzler,L Thiele.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Trans on Evolutionary Computation,1999,3(4):257 -271
  • 5N Srinivas,K Deb.Multiobjective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248
  • 6E Zitzler,M Laumanns,L Thiele.SPEA2:Improving the strength Pareto evolutionary algorithm[R].Swiss Federal Institute of Technology.Tech Rep:103,2001
  • 7K Deb,A Pratap,S Agarwal,et al.A fast and elitist multiobjective genetic algorithm:NSGA2 Ⅱ[J].IEEE Trans on Evolutionary Computation,2002,6(2):182-197
  • 8R Storn,K Price.Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359
  • 9J Ilonen,J K Kamarainen,J Lampinen.Differential evolution training algorithm for feed forward neural networks[J].Neural Processing Letters,2003,17(1):93-105
  • 10D G Mayer,B P Kinghorn,A A Archer.Differential evolution-An easy and efficient evolutionary algorithm for model optimization[J].Agricultural Systems,2005,83(3):315-328

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部