期刊文献+

An Inverse Problem of Identifying the Radiative Coefficient in a Degenerate Parabolic Equation 被引量:18

An Inverse Problem of Identifying the Radiative Coefficient in a Degenerate Parabolic Equation
原文传递
导出
摘要 The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第3期355-382,共28页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11061018,11261029) the Youth Foundation of Lanzhou Jiaotong University(No.2011028) the Long Yuan Young Creative Talents Support Program(No.252003) the Joint Funds of the Gansu Provincial Natural Science Foundation of China(No.1212RJZA043)
关键词 Inverse problem Degenerate parabolic equation Optimal control Exis-tence UNIQUENESS Stability CONVERGENCE 退化抛物型方程 辐射系数 反问题 二阶抛物型方程 非负特征形式 系数问题 数学模型 控制框架
  • 相关文献

参考文献39

  • 1Adams,R A. Sobolev Spaces[M].New York:Academic Press,1975.
  • 2Cannarsa,P,Tort,J,Yamamoto,M. Determination of source terms in a degenerate parabolic equation[J].Inverse Problems,2010.105003.
  • 3Cannarsa,P,Martinez,P,Vancostenoble,J. Carleman estimates for a class of degenerate parabolic operators[J].SIAM Journal on Control and Optimization,2008.1-19.
  • 4Cannarsa,P,Martinez,P,Vancostenoble,J. Null controllability of degenerate heat equations[J].Adv Differ Equ,2005.153-190.
  • 5Cannarsa,P,Martinez,P,Vancostenoble,J. Persistent regional null controllability for a class of degenerate parabolic equations[J].COMMUNICATIONS ON PURE AND APPLIED ANALYSIS,2004.607-635.
  • 6Cannon,J R,Lin,Y,Xu,S. Numerical procedure for the determination of an unknown coefficient in semilinear parabolic partial differential equations[J].Inverse Problems,1994.227-243.
  • 7Cannon,J R,Lin,Y. An inverse problem of finding a parameter in a semilinear heat equation[J].Journal of Mathematical Analysis and Applications,1990.470-484.
  • 8Chen,Q,Liu,J J. Solving an inverse parabolic problem by optimization from final measurement data[J].Journal of Computational and Applied Mathematics,2006.183-203.
  • 9Cheng,J,Yamamoto,M. One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[J].Inverse Problems,2000,(04):31-36.
  • 10Choulli,M,Yamamoto,M. Generic well-posedness of an inverse parabolic problem-the HSlder space approach[J].Inverse Problems,1996,(03):195-205.

同被引文献35

引证文献18

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部