期刊文献+

Local Stability for an Inverse Coefficient Problem of a Fractional Diffusion Equation 被引量:1

Local Stability for an Inverse Coefficient Problem of a Fractional Diffusion Equation
原文传递
导出
摘要 Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of medium, the authors consider an inverse coefficient problem utilizing finite measurements and obtain a local HSlder type conditional stability based upon two Carleman estimates for the corresponding differential equations of integer orders.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第3期429-446,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11101093) Shanghai Science and Technology Commission(Nos.11ZR1402800,11PJ1400800)
关键词 Carleman estimate Conditional stability Inverse coefficient problem Fractional diffusion equation 分数阶扩散方程 局部稳定性 反问题 多孔介质 扩散速度 系数问题 条件稳定 微分方程
  • 相关文献

参考文献17

  • 1Bisquert,J. Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination[J].Physical Review E,2005.011109.
  • 2Brunner,H,Ling,L,Yamamoto,M. Numerical simulations of 2D fractional subdiffusion problems[J].J Comp Phys,2010.6613-6622.
  • 3Bukhgeim,A,Klibanov,M. Global uniqueness of a class of multidimensional inverse problems[J].Soviet Math Doklady,1981.244-247.
  • 4Cheng,J,Nakagawa,J,Yamamoto,M,Yamazaki,T. Uniqueness in an inverse problem for a onedimensional fractional diffusion equation[J].Inverse Problems,2009.115002.
  • 5Hatano,Y,Hatano,N. Dispersive transport of ions in column experiments:an explanation of longtailed profiles[J].Water Resources Research,1998.1027-1033.
  • 6Hilfer,R. Fractional diffusion based on Riemann-Liouville fractional derivatives[J].Journal of Physical Chemistry B,2000.3914-3917.
  • 7Lin,Y,Xu,C. Finite difference/spectral approximation for the time-fractional diffusion equation[J].J Comp Phys,2007.1533-1552.
  • 8Liu,J,Yamamoto,M. A backward problem for the time-fractional diffusion equation[J].Applicable Analysis,2010.1769-1788.
  • 9Luchko,Y. Maximum principle for the generalized time-fractional diffusion equation[J].Journal of Mathematical Analysis and Applications,2009.218-223.
  • 10Ren,C,Xu,X,Lu,S. Regularization by projection for a backward problem of the time-fractional diffusion equation[J].Journal of Inverse and Ill-Posed Problems,2013.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部