期刊文献+

Analytic intermediate dimensional elliptic tori for the planetary many-body problem

Analytic intermediate dimensional elliptic tori for the planetary many-body problem
原文传递
导出
摘要 In our context,the planetary many-body problem consists of studying the motion of(n+1)-bodies under the mutual attraction of gravitation,where n planets move around a massive central body,the Sun.We establish the existence of real analytic lower dimensional elliptic invariant tori with intermediate dimension N lies between n and 3n-1 for the spatial planetary many-body problem.Based on a degenerate KolmogorovArnold-Moser(abbr.KAM)theorem proved by Bambusi et al.(2011),Berti and Biasco(2011),we manage to handle the difficulties caused by the degeneracy of this real analytic system. In our context,the planetary many-body problem consists of studying the motion of(n + 1)-bodies under the mutual attraction of gravitation,where n planets move around a massive central body,the Sun.We establish the existence of real analytic lower dimensional elliptic invariant tori with intermediate dimension N lies between n and 3n- 1 for the spatial planetary many-body problem.Based on a degenerate KolmogorovArnold-Moser(abbr.KAM) theorem proved by Bambusi et al.(2011),Berti and Biasco(2011),we manage to handle the difficulties caused by the degeneracy of this real analytic system.
作者 YAN DongFeng
出处 《Science China Mathematics》 SCIE 2014年第7期1487-1504,共18页 中国科学:数学(英文版)
关键词 spatial planetary many-body problem nearly integrable Hamiltonian systems KAM theorem quasi-periodic orbits elliptic invariant tori 多体问题 行星 圆环面 尺寸 相互吸引 万有引力 不变环面 简并
  • 相关文献

参考文献24

  • 1Arnold V I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat Nauk, 1963, 18:91-192.
  • 2Bambusi D, Berti M, Magistrelli E. Degenerate KAM theory for partial differential equations. J Differential Equations, 2011, 250:3379-3397.
  • 3Berti M, Biasco L. Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun Math Phys, 2011, 305:741-796.
  • 4Biasco L, Chierchia L, Valdinoci E. Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch Ration Mech Anal, 2003, 170:91-135.
  • 5Biasco L, Chierchia L, Valdinoci E. N-dimensional elliptic invariant tori for the planar (N 1)-body problem. SIAM J Math Anal, 2006, 37:1560-1588.
  • 6Celleti A, Chierchia L. KAM tori for N-body problems: A brief history. Celestial Mech Dynam Astronm, 2006, 95: 117-139.
  • 7Chierchia L. KAM theory and celestial mechnanics. In: Encyclopedia of Mathematics Physics, vol. 3. Amsterdam: Elsevier, 2006, 1-24.
  • 8Chierchia L, Pinzari G. Planetary Birkhoff normal forms. J Mod Dyn, 2011, 5:623-664.
  • 9Chierchia L, Pinzari G. The planetary N-body problem: Symplectic foliation, reductions and invariant tori. Invent Math, 2011, 186:1 77.
  • 10Chierchia L, Pusateri F. Analytic Lagrangian tori for the planetary many-body problem. Ergodic Theory Dyn Syst, 2009, 29:849-873.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部