期刊文献+

一种抑制激波计算中数值振荡现象的双重小波收缩方法 被引量:2

A Dual Wavelet Shrinkage Procedure for Suppressing Numerical Oscillation in Shock Wave Calculation
下载PDF
导出
摘要 在激波数值计算中,容易出现数值振荡的问题,振荡激烈时会掩盖真实解,为此提出了许多高精度复杂计算格式或采用人工粘性抑制数值振荡.从信号处理的角度,提出双重小波收缩方法,它能自适应提取激波数值振荡解中的真实物理解.先用局部微分求积法求解浅水波方程和理想流体Euler运动方程中的激波问题,发现其数值振荡现象严重,然后采用双重小波收缩方法对其处理,获得了无数值振荡解,它能准确捕捉激波的位置并且保持激波结构.相比于复杂的Riemann(黎曼)求解格式,借助小波收缩方法,可以采用相对简单的计算格式如微分求积法求解激波问题. In the numerical calculation of shock waves, numerical oscillation often occurred and contaminated the real solution in serious cases. For the purpose of suppressing the numeri- cal oscillation, various complicated numerical schemes or artificial viscosity methods had been applied. From the view of signal processing, a dual wavelet shrinkage procedure was formula- ted to extract the real solution hidden in the numerical solution with oscillation. The localized differential quadrature (LDQ) method was firstly used to solve the shock wave problems gov- erned by the shallow water equations and Euler equations for ideal fluid flow, and heavy oscil- lation emerged in these cases, then the dual wavelet shrinkage procedure was employed to sup- plement the LDQ method and the results without numerical oscillation were obtained, in which not only the position of shock/rarefaction wave was captured but the shock wave structure well kept. Compared with the previous complicated schemes, the present procedure enables some relatively simple scheme such as the LDQ method to effectively solve the shock wave problems.
出处 《应用数学和力学》 CSCD 北大核心 2014年第6期620-629,共10页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展计划(973计划)(2013CB036101) 国家自然科学基金(51309040 51379033 51379025) 中央高校基本科研业务费专项资金(3132014318 01780623)~~
关键词 激波 数值振荡 小波收缩 微分求积法 浅水波方程 EULER方程 shock wave numerical oscillation wavelet shrinkage method localized differential quadrature shallow water equation Euler equation
  • 相关文献

参考文献2

二级参考文献19

  • 1梅树立,陆启韶,张森文,金俐.偏微分方程的区间小波自适应精细积分法[J].应用数学和力学,2005,26(3):333-340. 被引量:18
  • 2郭会芬,邱翔,刘宇陆.小波变换在湍流数值研究中的应用[J].计算力学学报,2006,23(1):58-64. 被引量:7
  • 3VASILYEV O V, PAOLUCCI S, SEN M. A multi- level wavelet collocation method for solving partial differential equations in a finite, domain[J]. J Comput, Phys,1995,120:33-47.
  • 4QIAN S, WIESS J. Wavelets and the numerical solution of partial differential equations [J]. J Comput Phys, 1993,106 : 155-175.
  • 5LATTO A, RRSNILOFF H L, TENENBAUM E. Aware Technical Report AD910708[A]. Proceedings of the French-USA workshop on wavelets and turbulence[C]. Princeton University Springer-Verlag,Berlin, New York, 1992.
  • 6VASILYEV O V, PAOLUCCI S. A fast adaptive wavelet collocation algorithm for multidimensional pdes[J]. J Cornput Phys, 1997,138 : 16-56.
  • 7BEYLKIN G. On the representation of operators in bases of compactly supported wavelets[J].SIAM J NUMER ANAL ,1992,6(6) :1716-1740.
  • 8Marie Farge,Kai Schneider.Coherent Vortex Simulation (CVS), A Semi-Deterministic Turbulence Model Using Wavelets[J]. Flow, Turbulence and Combustion . 2001 (4)
  • 9K. Schneider,N.K.-R. Kevlahan,M. Farge.Comparison of an Adaptive Wavelet Method and Nonlinearly Filtered Pseudospectral Methods for Two-Dimensional Turbulence[J]. Theoretical and Computational Fluid Dynamics . 1997 (3-4)
  • 10Beylkin G,,Keiser J.On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases. Journal of Computational Physics . 1997

共引文献9

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部