期刊文献+

基于条件对数似然的BP神经网络多类分类器 被引量:1

Multi-class BP Neural Network Classifier Based on the Conditional Log-Likelihood
下载PDF
导出
摘要 BP神经网络分类器存在收敛速度慢的缺陷,为了提高分类器性能,针对这一缺陷对BP算法进行改进.提出将条件对数似然(CLL)准则融入到监督性BP神经网络多类型分类过程中,利用CLL的可分解性优势,计算测试样本的条件概率,在误差反向传播时利用条件概率对权值进行相应的加权降权操作,简化误差反馈过程中的计算量.在实验中对改进算法的收敛速度和准确率进行了测试,说明了该算法的有效性及实用性. BP neural network classifier has a slowly convergence rate, in order to improve the performance of the classifier, there is an improvement in BP algorithm for the problem. The Conditional Log-Likelihood (CLL) is applied into the supervisory neural network classification for the multi-class selection. By using the decomposability of CLL, calculate the conditional probability of the test samples. In the error back-propagation process, increasing or reducing the corresponding weights by using the conditional probabilities, which can simplify the computation in the process of error feedback. In the paper, we test the convergence speed and accuracy for the improved algorithm in the experiment. It illustrates the effectiveness and the practicality of the algorithm.
作者 任方 马尚才
出处 《计算机系统应用》 2014年第6期183-186,共4页 Computer Systems & Applications
关键词 BP神经网络 条件对数似然 多类分类器 收敛速度 监督性神经网络 BP neural network conditional log-likelihood multi-class classifier convergence speed supervisory neural network
  • 相关文献

参考文献3

二级参考文献16

  • 1HUANGWei,NAKAMORIYoshiteru,WANGShouyang.A GENERAL APPROACH BASED ON AUTOCORRELATION TO DETERMINE INPUT VARIABLES OF NEURAL NETWORKS FOR TIME SERIES FORECASTING[J].Journal of Systems Science & Complexity,2004,17(3):297-305. 被引量:10
  • 2王建梅,覃文忠.基于L-M算法的BP神经网络分类器[J].武汉大学学报(信息科学版),2005,30(10):928-931. 被引量:52
  • 3李炯城,黄汉雄.一种新的快速BP神经网络算法——QLMBP[J].华南理工大学学报(自然科学版),2006,34(6):49-54. 被引量:14
  • 4Ritter H.A spatial approach to feature linking[C] //Proceedings of International Conference on Neural Networks,Paris,1990.
  • 5Yi Z,Tan K K.Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions[J].IEEE Transactions on Neural Networks,2004,15(2):329-336.
  • 6Yi Z,Tan K K.Multistability analysis for recurrent neural networks with unsaturating piecewise linear transfer functions[J].Neural Computation,2003,15:639-662.
  • 7Weng S,Wersing H,Steil J J,et al.Learning lateral interactions for feature binding and sensory segmentation from prototypic basis interactions[J].IEEE Transactions on Neural Networks,2006,17(4):843-862.
  • 8Ontrup J,Wersing H,Ritter H.A computational feature binding model of human texture perception[y].Cognitive Processing,2004,5(1):31-44.
  • 9Wersing H,Kirstein S,Schneiders B,et al.Online learning for bootstrapping of object recognition and localization in a biologically motivated architecture[C] //Proceedings of International Conference on Computer Vision Systems,Santorini,Greece,2008.
  • 10Wu F Y.The Potts model[y].Review of Modern Physics,1983,54:235.

共引文献8

同被引文献32

  • 1王立柱,赵大宇.用分类与回归树算法进行人才识别[J].沈阳师范大学学报(自然科学版),2005,23(1):44-47. 被引量:4
  • 2刘崇林.人口时间序列的支持向量机预测模型[J].宁夏大学学报(自然科学版),2006,27(4):308-310. 被引量:5
  • 3温小霓,蔡汝骏.分类与回归树及其应用研究[J].统计与决策,2007,23(23):14-16. 被引量:14
  • 4Jakobsson M, Scholz SW, Scheet P, et al. Genotype, haplo- type and copy-number variation in worldwide human pop- ulation [J]. Nature,2012,451 : 998-1003.
  • 5Kaufman L, Rousseeuw PJ. Finding groups in data: an in- troduction to cluster analysis [M]. New York:Wiley, 2015.
  • 6Hagenaars JA. McCutcheon AL. Applied latent class anal- ysis [M]. New York : Cambridge University Press, 2012.
  • 7邱皓政.潜在类别模型的原理与技术[M].北京:教育科学出版社.2011.
  • 8张岩波.潜变量分析[M].北京:高等教育出版社,2011.
  • 9Lin TH,Dayton CM. Model selection information criteria for non-nested latent class models [J]. J Educ Behav Stat, 2012,22(3) :249-264.
  • 10邵峰晶,于忠清.数据挖掘原理与算法[M].北京:中国水利水电出版社.2013.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部