期刊文献+

基于遗传算法的高阶矩投资组合模型研究 被引量:3

The Higher Moment Portfolio Model Based on Genetic Algorithm
下载PDF
导出
摘要 金融资产收益数据普遍具有非对称和尖峰厚尾的分布,传统的马克维茨投资组合模型仅仅考虑了均值和方差的约束,这在确定投资组合时是不充分的.考虑了三阶矩偏度和四阶矩峰度对投资组合的影响,假定交易费用为V-型函数,建立了均值-方差-偏度-峰度投资组合模型,鉴于多目标优化求解的复杂性,编写遗传算法程序求解这一高阶矩投资组合,最后给出了一个数值算例. The data of financial assets gains generally have asymmetric distribution and a fat tail, the traditional Markowitz portfolio model only considers the constraints of mean and variance, which is not sufficient in the deter- mination of the portfolio. Considering the impact of third-order moments skewness and the four order moment kurtosis on portfolio, assuming that the transaction costs are the V-type function, we established a mean-variance- skewness-kurtosis portfolio model. Then we used the genetic algorithm to solve the higher moment portfolio model and give a numerical example at the final.
出处 《河南科学》 2014年第5期697-702,共6页 Henan Science
基金 国家自然科学基金资助项目(71073056)
关键词 投资组合 高阶矩 交易费用 遗传算法 多目标优化 investment portfolio; higher moments; transaction costs; genetic algorithm; muhi-objectiveoptimization
  • 相关文献

参考文献19

  • 1Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7 (1) : 77-91.
  • 2Samuelson P. The fundamental approximation of theorem of portfolio analysis in terms of means, variance and higher moments[J]. Review of Economics Studies, 1970, 37 (4) : 537-542.
  • 3Arnott R D, Wagner W H. The measurement and control of trading costs [J]. Financial Analysts Journal, 1990,4 (6) : 73-80.
  • 4Lai T Y. Portfolio selection with skewness: a multiple-objective approach [J ]. Review of Quantitative Finance and Accounting, 1991,1 (3) : 295 -505.
  • 5Sunh Q, Yan Y. Skewness persistence with optimal portfolio selection[J]. Journal of Banking and Finance, 2003,27(6): 1111-1121.
  • 6Hwang S, Satchell S. Mode ling emerging risk prenia using higher moments[J]. International Journal of Finance and Economics, 1999,4(4) : 271-296.
  • 7Eric Jondeau, Michael Rockinger. Optimal portfolio allocation under higher moments[J]. European Financial Management, 2006, 12(1):29-55.
  • 8Gus Gustavo M, De Athaydea, Renato G, et al. Finding a maximum skewnesss portfolio a general solution to three moments portfolio choice[J]. Journal of Economic Dynamics & Control, 2004, 28(7): 1335-1352.
  • 9张树斌,白随平,姚立.含有交易成本的均值-方差-偏度资产组合优化模型[J].数学的实践与认识,2004,34(2):22-26. 被引量:8
  • 10许启发.高阶矩波动性建模及应用[J].数量经济技术经济研究,2006,23(12):135-145. 被引量:35

二级参考文献58

  • 1许启发.高阶矩波动性建模及应用[J].数量经济技术经济研究,2006,23(12):135-145. 被引量:35
  • 2许启发,张世英.多元条件高阶矩波动性建模[J].系统工程学报,2007,22(1):1-8. 被引量:24
  • 3蒋翠侠,许启发,张世英.金融市场条件高阶矩风险与动态组合投资[J].中国管理科学,2007,15(1):27-33. 被引量:28
  • 4Markowitz H M. Portfolio selection[J]. The Journal of Finance, 1952, 7(1): 77-91.
  • 5Samuelson P. The fundamental approximation of theorem of portfolio analysis in terms of means, variance and higher moments [ J ]. Review of Economics Studies, 1970(37) : 537 - 542.
  • 6Rubinstein M E. A comparative statics analysis of risk premiums[J]. The Journal of Business, 1973(12) : 605 - 615.
  • 7Scott R C, Horvath P A. On the direction of preference for moments of higher than the variance[J]. Journal of Finance, 1980(35): 915 - 919.
  • 8Konno H, Suzuki K. A mean-variance-skewness optimization model[ J ]. Journal of the Operations Research of Japan, 1995(38) : 137- 187.
  • 9Lai T Y. Portfolio selection with skewness: a multiple-objective approach[J]. Review of Quantitative Finance and Accounting, 1991 (1) : 293 - 305.
  • 10Sunh Q,. Yan Y. Skewness persistence with optimal portfolio selection [J]. Journal of Banking and Finance, 2003(27): 1111 - 1121.

共引文献61

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部