期刊文献+

离心力竭运动对大鼠骨骼肌肌浆网Ca^(2+)-ATP酶活性的影响

Effect of acute eccentric exercise on skeletal muscles sarcoplasmic reticulumin Ca^(2+)-ATPase activity in rats
下载PDF
导出
摘要 目的:采用大鼠下坡跑运动损伤模型,研究离心力竭运动后不同时刻大鼠骨骼肌肌浆网Ca2+-ATP酶活性的变化,探讨离心力竭运动所致骨骼肌超微结构损伤机制,为科学运动训练及运动恢复提供实验和理论依据。方法:雄性SD大鼠60只随机分为6组(每组10只):安静对照组、运动后即刻组、12h组、24h组、48h组和72h组,以速度16m/min,坡度-16°进行跑台运动,运动100min,休息5min,再运动100min,在不同时刻观察大鼠肱三头肌肌浆网Ca2+-ATP酶活性的变化。结果:运动后即刻肌浆网Ca2+-ATP酶活性与对照组相比显著下降(P<0.01),随后开始恢复,运动后24h接近对照组水平(P>0.05),运动后48h已完全恢复到对照组水平。结论:离心力竭运动后即刻大鼠肱三头肌肌浆网Ca2+-ATP酶活性显著下降,随后逐渐恢复,运动后24h明显恢复,至48h已完全恢复,肌浆网Ca2+-ATP酶活性的变化可以间接评定运动后骨骼肌的损伤。 Purpose: Exercise induced muscle ultrastructural injury from acute and unaccustomed eccentric exercise. This study used rats classic downhill run sports injury model, different time after injury in rat skeletal muscle sarcoplasmic reticulum Ca^2+-ATPase activity changes were studied, to explore the mechanism of skeletal muscle injury from acute eccentric exercise, and provide a theoretical basis for scientific training. Methods:Sixty adult male Sprague-Dawley rats are divided into six groups at random: control group(n=10);treadmill exercise group(n=50),which was further divided into 0h、12h、24h、48h、72h groups. Exercise group performed 200 min treadmill exercise at 16m/min, on a-16°incline, with a 5 min rest period between two 100 min running bouts. The muscle samples were taken immediately, 12h, 24h, 48h and 72h after exercise, then investigate rats' triceps skeletal muscle sarcoplasmic reticulum Ca^2 +-ATPase activity changes in different time. Results: The sarcoplasmic reticulum Ca^2+-ATP activity immediately after exercise decreased significantly compared with the control group(P〈0.01), and then restores gradually, 24 hours after exerciserestored approach to the control group(P 〈0.05), at 48 hours after exercise has been fully restored to control group level. Conclusions: After acute eccentric exercise rat skeletal muscle sarcoplasmic reticulum Ca^2+-ATPase activity can be a indirect indicators of rat's skeletal muscle injury after eccentric exercise.
作者 刘建军 孙岳
出处 《辽宁体育科技》 2013年第6期22-25,共4页 Liaoning Sport Science and Technology
关键词 大鼠 离心运动 骨骼肌损伤 肌浆网CA^2+-ATP酶 rat eccentric exercise skeletal muscle injury sarcoplasmic reticulum Ca^2+-ATPase
  • 相关文献

参考文献21

  • 1G.S.R.Tupling,et al.Effects of ischemia on sareoplasmic reticulum Ca2+ uptake and Ca2+ release in rat skeletal muscle[J].Physiol Endocrinol Metab,2001,281:E224-E232.
  • 2Westerblad,H,and Allen DG.Mechanisms underlying changes of tetanic[Ca2+]and force in skeletal muscle[J].Acta Physiol Scand,1996,156:407-416.
  • 3Baker,AJ,Longuemare MC,Brandes R,and Weiner MW.Intracellular tetanic calcium signals are reduced in fatigue of whole skeletal muscle[J].Physiol Cell Physiol,1993,264:577-582.
  • 4Bedford T.G.,Tipton.,Wilson N.C.,et al.Maximum oxygen consumption of rats and its changes with various experimental procedures[J].Appl Physiol,1997,47:8750-7587.
  • 5Carl S L,Feix K,CaswelI A H.Immunolocalization of triadin,DHP receptors,and ryanodine receptors in adult and developing skeletal muscle of rats[J].Muscle&Nerve,1995,18 (11):1232-1243.
  • 6Devris,H.A.Quantitative electromyographic investigation of the spasm theory of muscle pain[J].Phy.Med,45:119-134.
  • 7Armstrong RB,Ogilvie RW,Schwane JA.Eccentric exercise induced injury to rat skeletal muscle[J].Appl Physiol,1983,54:80-93.
  • 8Newham D.,et al.Ultrastructural changes after concentric and eccentric of human muscle[J].Neurol Sci,1983,61(1):109-112.
  • 9McHugh MP,etal.Electromyographic analysis of exercise resulting symptoms of muscle damage[J].Sports Sci,2000,18 (3):163-172.
  • 10RallJA.Energetic aspects of skeletal muscle contraction:implication of fiber types[J].Exer Sports Sci Rev,1985,13:33-74.

二级参考文献10

  • 1Giuseppe I.Mechanism of Calcium transport.Ann Rev Physiol,1985,(47):573~601.
  • 2salminen A,Vihko V,Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation vitro.Acta physiol scand,1983,(117):109~113.
  • 3Denton RM.Calcium as the secondmessenger within mitochondria of the heart and other tissues.Ann Rev Physiol,1990,(52)451~466.
  • 4Carafoli E.Membrane transport in the cellular homeostasis of calcium.Cardiovasc Pharmacol,1986,(8):53~55.
  • 5Williams J H,Ward C W,Spangenburg E E,et al. Functional aspects of skeletal muscle contractile apparatus and sarcoplasmic reticulum after fatigue[J]. J Appl Physiol, 1998, 85(2): 619-626.
  • 6Byrd S K.Altered Sarcoplasmic reticulum function after high-intensity exercise[J]. J Appl Physiol, 1989,67(5): 2072-2077.
  • 7Byrd S K.Altered Effect of exercise of varying duration on sarcoplasmic reticulum function[J]. J Appl Physiol, 1989, 66(3):1383-1389.
  • 8Favero T G,Pessah I N,Klug G A. Prolonged exercise reduces Ca2+release in skeletal muscle sarcoplasmic reticulum[J]. Pflugers Arch, 1993, 42: 472-475.
  • 9Brien O P J ,Shen H, Weiler J,et al. Myocardial Ca-sequestration failure and compensatory increase in Ca-ATPase with congestive cardiomyopathy: kinetic characterization by a homogenate microassay using real-time ratiometric indo-I spectrofluorometry[J]. Mol Cell Biochem , 1991 , 102:1-12.
  • 10Hess M L, Okabe E A.Proton and free oxygen raical interaction with the calcium transport system of cardiac sarcoplasmic reticulum[J].J Mol Cell Cardiol, 1981, 13(8): 767.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部