期刊文献+

机载PHM中的无线传感器网络功率控制算法

WSNs power control algorithm in airborne PHM
下载PDF
导出
摘要 由于机载环境的复杂性,机载故障预测与健康管理(PHM)系统采用无线传感器网络(WSNs)技术进行数据采集。鉴于机载PHM对消息传输高实时性的要求,需要通过功率控制来优化网络拓扑,减少网络平均长度。提出一种基于小世界理论的功率控制算法(PCS),该算法通过添加捷径来降低网络平均路径长度,并采用遗传算法对捷径进行优化,得到通信代价较小、网络平均路径长度较短的捷径。仿真结果表明:PCS算法优化了网络拓扑,缩短了网络平均路径长度,提高了信息传输速率,并且在较大的传感器网络环境下也具有较好的适用性。 Because of complexity of airborne environment, wireless sensor networks (WSNs) technology is used to collect data by aircraft prognostics and health management(PHM) system. The requirements of high real-time on information transmission for aircraft PHM, should shorten the network average path length by power control to optimize network topology. A power control algorithm based on small world theory (PCS) is proposed, the algorithm shortens network average path length by the means of adding short-cuts, and it uses genetic algorithm to optimize the shortcuts, so optimization network which has less communication cost and shorter network average path length can be obtained. The simulation results show that the PCS algorithm optimizes network topology, shortens network average path length and improves information transmission rate.
作者 罗缔 郑巍
出处 《传感器与微系统》 CSCD 北大核心 2014年第6期122-125,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61262020) 航空科学基金资助项目(2012ZD56) 江西省教育厅青年自然科学基金资助项目(GJJ12460)
关键词 机载PHM 无线传感器网络 小世界 遗传算法 aircraft PHM wireless sensor networks (WSNs) small world genetic algorithm
  • 相关文献

参考文献15

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:284
  • 2徐萍,康锐.预测与状态管理系统(PHM)技术研究[J].测控技术,2004,23(12):58-60. 被引量:32
  • 3Du Jun, Wang Shaoping, Zhang Haiyan. Layered clustering multi- fault diagnosis for hydraulic piston pump [ J ]. Mechanical Systems and Signal Processing,2013 (36) :487-504.
  • 4Harri Haanpaa, Andre' Schumacher, Pekka Orponen. Distributed algorithms for lifetime maximization in sensor networks via Min- Max spanning subgraphs [ J ]. Wireless Network, 2010, 16: 875 - 887.
  • 5Demo J, Steiner A, Friedersdorf F, et al. Development of a wire- less miniaturized smart sensor network for aircraft corrosion moni- toring[ C]//Proc of IEEE Aerospace Conf,2010.
  • 6Cheng S F,Azarian M H, Pecht M G. Sensor system for prognos- tics and health management [ J ]. Sensors, 2010,10 (6) :5774 - 5797.
  • 7WANG Hwang-cheng.Energy saving with node sleep and power control mechanisms for wireless sensor networks[J].The Journal of China Universities of Posts and Telecommunications,2011,18(1):49-59. 被引量:5
  • 8Macedo Daniel F, Santos Aldri L Dos. Transmission power and data rate aware routing on wireless networks [ J ]. Computer Net- works ,2010,54 ( 17 ) :2979 -2990.
  • 9黄浩军,胡光岷,于富财.一种基于跨层功率控制的Ad hoc网络路由算法[J].计算机应用研究,2011,28(5):1793-1797. 被引量:1
  • 10Acer Utku Gtinay. Weak state routing for large-scale dynamic net- works[ C]//IEEE/ACM Transactions on Networking,2010.

二级参考文献68

  • 1Coy P, Gross N. 21 ideas for the 21st century. Business Week, 199-08-30: 78-167.
  • 210 emerging technologies that will change the world. MIT Technology Review, 2003, 106:33-49.
  • 3Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer Networks, 2008, 52(12): 2292-2330.
  • 4Cardei M, Thai M, Li Y, et al. Energy-efficient target coverage in wireless sensor networks. Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'05): Vol 3, Mar 13-17, 2005, Miami, FL, USA. Piscataway, NJ, USA: IEEE, 2005: 1976-1984.
  • 5Chong C Y, Kumar S. Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE, 2003, 91(8): 1247-1256.
  • 6Chamam A, Pierre, S. Energy-efficient state scheduling for maximizing sensor network lifetime under coverage constraint. Proceedings of the 3rd IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WIMOB'07), Oct 8-10, 2007, White Plains, NY, USA. Piscataway, N J, USA: IEEE, 2007:63.
  • 7Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks. Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'05): Vol 3, Mar 13-17, 2005, Miami, FL, USA. Piscataway, NJ, USA: IEEE, 2005: 1567-1576.
  • 8Cao Q, Abdelzaher T, He T, et al. Towards optimal sleep scheduling in sensor networks for rare-event detection. Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN'05), Apr 25-27, 2005, Los Angeles, CA, USA. Los Alamitos, CA,USA: 1EEE Computer Society, 2005:20-27.
  • 9Jiang B, Han K, Ravindran B, et al. Energy efficient sleep scheduling based on moving directions in target tracking sensor network. Proceedings of the 22nd IEEE International on Parallel and Distributed Processing Symposium (IPDPS'08), Apr 14-18, 2008, Miami, FL, USA. Los Alamitos, CA, USA: IEEE Comouter Society, 2008:1-10.
  • 10Jeong J, Hwang T, He T, et al. MCTA: target tracking algorithm based on minimal contour in wireless sensor networks. Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM'07), May 6-12, 2007, Anchorage, AK, USA. Piscataway, NJ, USA: 1EEE, 2007: 2371-2375.

共引文献312

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部