期刊文献+

三自旋1/2量子控制系统的伴随矩阵计算

Computation of Adjoint Matrices in Three-spin 1/2 Quantum Control Systems
下载PDF
导出
摘要 将关于密度算子的Liouville-von Neumann方程表示成坐标微分方程,伴随矩阵具有重要作用。对于三自旋1/2量子系统需要64个64×64的伴随矩阵来描述其坐标动态。基于已建立的多自旋1/2量子系统的伴随矩阵和反伴随矩阵的计算公式,该文给出了三自旋1/2量子系统的几个伴随矩阵和反伴随矩阵的算例。计算结果表明,这些64维的伴随矩阵和反伴随矩阵均是稀疏矩阵。通过计算将这些矩阵的非零元列举在表格中并讨论了非零元的分布。 The adjoint matrices play an important role in the coordinate differential equation transformed from the Liouville-von Neumann equation for a density operator. In order to characterize the dynamics of the coordinates of the density operator in three-spin 1 /2 systems,64 adjoint matrices,which are 64 dimensional, need to be computed. Based on the established computational formulas of adjoint and anti-adjoint matrices in multi-spin 1 /2 systems,the computational examples of some adjoint and anti-adjoint matrices are given in three-spin 1 /2 systems. The results of the examples reveal these matrices are sparse. All the nonzero entries of these sparse matrices are listed in tables and the distribution of the nonzero entries in each 64 × 64 matrix is discussed as well.
出处 《杭州电子科技大学学报(自然科学版)》 2014年第3期1-8,共8页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61273093) 浙江省自然科学基金资助项目(LZ12F03001)
关键词 自旋量子系统 伴随与反伴随矩阵 李代数 张量积 泡利矩阵 spin system adjoint and anti-adjoint matrix Lie algebra tensor product Pauli matrix
  • 相关文献

参考文献10

  • 1Mabuchi H, Khaneja N. Principles and applications of control in quantum systems [J]. International Journal of Robust and Nonlinear Control ,2005,15 ( 15 ) :647 - 667.
  • 2Dong D, Petersen I R. Quantum control theory and applications: a survey [ J ]. Control Theory and Applications, IET, 2010,4(12) :2 651 -2 671.
  • 3Ahafini C. Representing muhiqubit unitary evolutions via Stokes tensors[ J]. Physical Review A ,2004,70(3 ) :032 -331.
  • 4D'Alessandro D. Small time controllability of systems on compact Lie groups and spin angular momentum [J].Journal of Mathematical Physics,2001,42(9) :4 488 -4 496.
  • 5Khaneja N, Brockett R, Glaser S J. Time optimal control in spin systems [J]. Physical Review A,2001,63 (3) :032 308.
  • 6Boscain U, Mason P. Time minimal trajectories for a spin 1/2 particle in a magnetic field[ J]. Journal of Mathematical Physics,2006,47(6) :062 -101.
  • 7Fu S, Chen M Z Q. Optimal control of single spin-l/2 quantum systems[ J]. IET Control Theory and Applications,2014, 8(2) :86 -93.
  • 8Albertini F, D'Alessandro D. Control of the evolution of Heisenberg spin systems [J]. European Journal of Control,2004, 10 ( 5 ) :497 - 504.
  • 9Altafini C. Feedback control of spin systems [ J ]. Quantum Information Processing ,2007,6 (1):9- 36.
  • 10Zhou S, Fu S. Matrix representations for adjoint and anti-adjoint operators in multi-spin 1/2 systems[J]. Quantum Information Processing ,2011,10 ( 3 ) :379 - 394.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部