期刊文献+

基于双权值神经网络的煤气炉系统优化

A Gas Furnace Optimized Application Based on Double-weight Neural Network
下载PDF
导出
摘要 一般的化工过程的输入输出系统具有高度的非线性特性,双权值神经网络具有较强的逼近与泛化能力,用工厂的实测数据,用双权值神经网络很好地逼近了一个煤气炉系统。利用遗传算法全局寻优的特点,找到了系统的若干组可行输入,并根据能耗评估,得到系统的最优输入。利用双权值神经网络及遗传算法为系统优化提供了一套解决方案。 Input-output system of gas furnace for the chemical system has highly nonlinear characteristics. Double-weight neural network has strong approximation and generalization ability. With double-weight neural network approximation to the gas system,use global optimization characteristics of the genetic algorithm( GA) to seek the feasible input of the system,and according to the input energy evaluation,a solution for factory to reduce energy consumption has been offered by getting the optimal system input.
作者 张有正
出处 《杭州电子科技大学学报(自然科学版)》 2014年第3期38-42,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省教育厅科研资助项目(Y200803632)
关键词 双权值神经网络 遗传算法 系统优化 煤气炉 节能降耗 double-weight neural network genetic algorithm system optimization gas furnace optimization energy conservation
  • 相关文献

参考文献9

二级参考文献24

  • 1张铁中,周天娟.草莓采摘机器人的研究:Ⅰ.基于BP神经网络的草莓图像分割[J].中国农业大学学报,2004,9(4):65-68. 被引量:41
  • 2李建民.汉语语音识别的研究.北京:清华大学硕士论文,1991.
  • 3Pallett D S,Fiscus J G,Alvin M,et al.Broadcast news benchmark test results english and non-english,http://www.nist.gov/speech /history /index.htm,1997.
  • 4Wang Shoujue.A new development on ANN in China-Biomimetic pattern recognition and multi weight vector neurons.Lecture Notes in Artificial Intelligence,2003;2639:35-43.
  • 5Wang Shoujue,IJCNN'99
  • 6D Michie,D J S piegelhalter,C C Taylor.Machine learning,neural and statistical classification[M].Ellis Horwood,London,1994.
  • 7W Duch,N Jankowski.Transfer functions:hidden possibilities for better neural networks [C].In:Proceedings of European Symposium on Artificial Neural Networks Bruges(Belgium),2001:81-94.
  • 8W Duch,N Jankowski.Survey of neural transfer functions[C].In:Neural Computing Survey 2,1999:163-213.
  • 9G Dorffner.Unified framework for MLPs and RBFNs:introducing conic section function networks[J].Cybernetics and Systems, 1994 ; 25(4):511-554.
  • 10M Maruyama,F Girosi,T Poggio.A connection between GRBF and MLP.AI Memo, No. 1291, Massachusetts Institute of TechnOlogy, Cambridge, 1992.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部