期刊文献+

慢性高糖诱导的LDH活性增高引起NIT-1细胞胰岛素分泌缺陷

Increased LDH-A Activity Induced by Chronic Exposure to High Glucose Contributes to Insulin Secretory Defect in NIT-1 Cells
原文传递
导出
摘要 目的:探讨慢性高糖状态下NIT-1细胞乳酸脱氢酶-A(LDH—A)活性与胰岛素分泌的关系。方法:以高糖单独或与草氨酸钠(LDH-A竞争性抑制剂)、N-乙酰半胱氨酸(NAC)联合作用于NIT-1细胞,测定LDH-A表达与活性、乳酸、反应氧族(ROS)和胰岛素分泌的相关性。结果:慢性高糖作用可提高NIT-1细胞LDH-A表达与活性、乳酸水平,使胰岛素分泌受损;草氨酸钠作用可降低慢性高糖诱导的NIT-1细胞LDH-A活性和促进乳酸水平增高,改善细胞胰岛素分泌;此外,NAC作用引起的NIT-1细胞ROS水平下降伴随LDH-A活性、乳酸水平下降和胰岛素分泌改善。结论:慢性高糖诱导的LDH—A活性增高引起NIT-1细胞胰岛素分泌缺陷;ROS激活LDH—A可能是胰岛D细胞葡萄糖毒性的机制之一。 Objective: To investigate the relationship between lactate dehydrogenase-A (LDH-A) activity and insulin secretion under chronic high-glucose conditions in NIT-1 cells. Methods: NIT-1 cells were treated with high glucose in presence/absence of oxamate (a competitive inhibitor of LDH-A) or N-acetylcysteine (NAC), LDH-A expression, activity, lactate production, reactive oxygen species (ROS), and insulin secretion were examined. Results: Chronically high glucose levels enhanced LDH-A expression, activity, and lactate production, and impaired insulin secretion in NIT-1 cells. Treatment with oxamate diminished the elevation of LDH-A activity induced by high glucose levels, reduced lactate production, and im- proved the impaired insulin secretion from NIT-1 cells observed in the absence of inhibitor. In addition, the reduction in ROS levels by NAC occurred simultaneously with the inhibition of LDH-A activity, lactate production, and the improvement in insulin secretion of NIT-1 cells. Conclusion: The results of our study indicate that increased LDH-A activity induced by chronic exposure to high glucose contributes to insulin secretory defect in NIT-1 cells. LDH-A activated by ROS may be one of the mechanisms of beta-cell glucotoxicity.
出处 《按摩与康复医学》 2014年第6期230-233,共4页 Chinese Manipulation and Rehabilitation Medicine
基金 广东省药学会基金资助项目,编号:H002012005
关键词 胰岛β细胞 乳酸脱氢酶-A 胰岛素分泌 反应氧族 葡萄糖毒性 Pancreatic beta-cell lactate dehydrogenase-A insulin secretion reactive oxygen species glucotoxicity
  • 相关文献

参考文献11

  • 1Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic 13-cell glucotoxicity: recent findings and future re- search directions[J]. Mol Cell Endocrinol,2012,364(1-2): 1-27.
  • 2Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell[J]. Diabetes Obes Metab,2013, 15(6):503 -512.
  • 3Sekine N, Cirulli V, Regazzi R, et al. Low lactate dehydrogenase and higla mitochondrial glycerol phosphate dehydrogenase in pan- creatic beta-cells[J]. J Biol Chem, 1994,269(7):4895-4902.
  • 4Prochazka B, Qureshi MA, Matty AJ. Lactate dehydrogenase ac- tivity and isoenzyme patterns in skeletal muscle, fat, exocrine pan- creas and isolated pancreatic islets of normal and obese-Hypergly- caemic mice[J]. Diabetologia,1970,6(5):493-498.
  • 5Laybutt DR, Sharma A, Sgroi DC, et al. Genetic regulation of met- abolic pathways in beta-cells disrupted by hyperglycemia[J]. J Bi- ol Chem,2002,277 (13):10912-10921.
  • 6Bensellam M, Van Lommel L, Overbergh L, et al. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, in- termediate- and high- glucose concentrations[J]. Diabetologia, 2009,52(3):463-476.
  • 7Marselli L, Thorne J, Dahiya S, et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissec- tion from subjects with type 2 diabetes[J]. PLoS One,2010,5(7): e11499.
  • 8Schuit F, Van Lommel L, Granvik M, et al. Beta-Cell-specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion? [J]. Diabetes,2012,61(5):969-975.
  • 9Yu T, Robotham JL, Yoon Y. Increased production of reactive oxy- gen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology[J]. Proc Natl Acad Sei USA,2006, 103(8):2653-2658.
  • 10Shi DY, Xie FZ, Zhai C, et al. The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells[J]. Mol Cancer,2009,8:32.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部