期刊文献+

Mn_3N_2/CMK-8复合材料的制备及其作为锂离子电池负极材料的性能 被引量:1

Synthesis and Electrochemical Performance of Mn_3N_2/CMK-8 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries
下载PDF
导出
摘要 将MnNO3填充在有序介孔碳CMK-8孔道中,然后在氨气气氛中烧结合成了Mn3N2/CMK-8复合材料。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征。利用充放电测试考察了复合材料作为锂离子电池负极材料的性能。发现Mn3N2分布在CMK-8孔道中及其周围,复合材料的充放电性能显著优于Mn3N2,复合材料中Mn3N2的比容量明显高于无CMK-8的样品(在恒电流为100mA/g时,比容量为480 mAh·g-1),循环20次的容量损失率只有0.62%。本研究结果表明CMK-8明显提高了Mn3N2的充放电性能,可能是CMK-8特殊的孔道结构和良好的导电性减小了Mn3N2的粒径并提高了其电导率。 The composite of ordered mesoporous carbon (CMK- 8 ) and Mn3 N2 (Mns N2/CMK -8 ) was prepared by the wet impregnation of CMK - 8 with MnNO3 solution followed by calcination. Its morphology and structure were examined u- sing scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X -ray diffraction (XRD). Its electrochemical performance as the negative electrode material of lithium - ion batteries was investigated by galvanostatic charge -discharge tests. The results show that Mn3N2 is formed inside the mesopore channels of CMK- 8 and some particles are located on the surface of CMK-8, The composite shows significantly greater high -rate performance than c Mn3 N2. The specific capacity of Mn3 N2 in the composite is higher than Mn3 N2 without CMK - 8 (480 mAh · g- 1 ). The capac- ity loss after 20 cycles was less than 0.62%. This result clearly indicates that CMK - 8 improves the high rate performance of Mn3N2, likely by reducing the particle size of MnaN2 and increasing its electronic conductivity owing to the unique struc-ture and good electronic conduction nature of CMK - 8.
作者 方晶
出处 《江西化工》 2014年第1期97-101,共5页 Jiangxi Chemical Industry
关键词 Mn3N2 介孔材料 复合材料 锂离子电池 负极材料 Ordered mesoporous carbon Manganese nitride Composite Lithium- ion battery Negative electrode ma-terial
  • 相关文献

参考文献19

  • 1Xiang,H. F. ; Zhang, X. ; Jin, Q. Y. ; Zhang, C. P. ; Chen, C. H. ; C,e, X. W. J. Power Sources 2008,183,355.
  • 2Koga, C. ; Wada, S. ; Nakayama, M. Electrochim. Acta 2010,55,2561.
  • 3Dedryvere, R. ; Foix, D. ; Franger, S. ; Patoux, S. ; Daniel, L. ; Gonbeau, D. J. Phys. Chem. C 2010, 14,10999.
  • 4Capsoni, D. ; Bini, M. ; Massarotti, V. ; Mustarelli, P. ; Fermri, S. ; Chiodelli, G. ; Mozzati, M. C. ; Galinetto, P. J. Phys. Chem. C 2009,113,19664.
  • 5Lee, S. C.; Lee, S. M.; Lee, J.W.; Lee, J. B.; Lee, S. M.; Hart, S. S.; Lee, H. C.; Kim, H. J. J. Phys. Chem. C 2009,113,18420.
  • 6Yoehikawa, D. ;Kadoma, Y. ; Kim, J. M. ; Ui, K. ; Kumagai, N. ; Kitamura, N. ; Idemoto Y. Electro- china. Aeta 2010,55,1872.
  • 7Rahman, M. M. ;Wang, J. Z. ; Hassan, M. F. ; Chou, S. ; Wexler, D. ; Liu, H. K. J. Power Sources 2010,195,4297.
  • 8Stoumara, M. E. ; Shenoy, V. B. J. Power Sources 2011,196,5697.
  • 9Z. W. Fu, Y. Wang, X. L. Yue, S. L. Zhao, Q.Z. Qin, J. Phys. Chena. B2004,108,2236.
  • 10Y. Wang, Z.W. Fu, X. L. Yue, Q.Z. Qin, J. Electrochem. Soc. 2004,151,162.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部