期刊文献+

高阶效应对怪波传输的影响 被引量:1

Higher-order Effects to the Transmission of Rogue Wave
原文传递
导出
摘要 求出高阶Hirota方程在可积条件下的一种精确呼吸子解,并在解的基础上得到Hirota方程的一种怪波解。从怪波解的形式和图形中深刻认识到怪波的两个特征——时空局域性和高能量特点,认识到怪波产生的物理机制——平面波和其他波的叠加。利用分布傅立叶方法数值研究了怪波在考虑自频移和拉曼增益时的传输特性,自频移使怪波中心发生偏移,拉曼增益使怪波分裂得更快;数值模拟了怪波之间的相互作用特点——随着怪波之间距离的减小,怪波将合二为一,成为一束怪波,之后再分裂,并分析了拉曼增益和自频移对怪波相互作用的影响。 A breather soliton solution of the higher-order Hirota equation has been given under the integrable condition, and the rogue solution of Hirota equation is obtained on the basis of the breather solion solutions, which is helpful to understand the characteristics and the physical reason of rogue wave. By the distribution Fourier method, the transmission characteristics of rogue wave was studied in considering the frequency shift and considering the Raman gain, and the interaction between rogue wave was analyzed in this paper.
出处 《量子光学学报》 CSCD 北大核心 2014年第2期143-147,共5页 Journal of Quantum Optics
基金 国家自然科学基金(61078079)
关键词 Hirota方程 怪波 拉曼增益 Hirota equation rogue wave Raman gain
  • 相关文献

参考文献3

二级参考文献37

  • 1Ankiewicz, A., Clarkson, P.A., Akhmediev, N., Rogue waves, rational solutions, the Patterns of their zeros and integral ralations, J. Phys. A: Math. Theor., 2010, 43: 122002.
  • 2Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M., Rogue waves and rational solutions of the nonlinear Schrodinger equation, Phys. Rev. E., 2009, 80: 026601.
  • 3Lin F., Lin T.C., Vortices in two dimensional Bose-Einstein Condensates. Geometry and nonlinear par- tial differential equations, Hangzhou, 2001, 87, 114, AMS/IP Stud. Adv. Math. 29, Amer. Math. Soc. Providence, RI, 2002.
  • 4Chen J., Guo B., Strong instability of standing waves for a nonlocal Schrodinger equation, Physica D, 2007, 227: 142-148.
  • 5Guo B., Ling L., General rational solutions and novel soliton solutions for the nonlinear Schrodinger equation, Submitted.
  • 6谷超豪,郭柏灵等.孤立子理论及其应用,第一章,杭州:浙江科技出版社,1999.
  • 7Chen C. and Guo B., Solution theory of the coupled time-dependent Ginzburg-Landan equations, Interna- tional Journal of Dynamical Systems and Differential Equations, 2009, 2.
  • 8Yah Z., Financial rogue wave, Commun. Theor. Phys., 2010, 54: 947-949.
  • 9Gagnon L,Blanger P A. Adiabatic amplification of optical solitons.Phys Rev A,1991,43(11):6187-6193
  • 10Hasegawa A,Kodama Y. Solitons in optical communications. New York: Oxford University Press,1995

共引文献30

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部