摘要
求出高阶Hirota方程在可积条件下的一种精确呼吸子解,并在解的基础上得到Hirota方程的一种怪波解。从怪波解的形式和图形中深刻认识到怪波的两个特征——时空局域性和高能量特点,认识到怪波产生的物理机制——平面波和其他波的叠加。利用分布傅立叶方法数值研究了怪波在考虑自频移和拉曼增益时的传输特性,自频移使怪波中心发生偏移,拉曼增益使怪波分裂得更快;数值模拟了怪波之间的相互作用特点——随着怪波之间距离的减小,怪波将合二为一,成为一束怪波,之后再分裂,并分析了拉曼增益和自频移对怪波相互作用的影响。
A breather soliton solution of the higher-order Hirota equation has been given under the integrable condition, and the rogue solution of Hirota equation is obtained on the basis of the breather solion solutions, which is helpful to understand the characteristics and the physical reason of rogue wave. By the distribution Fourier method, the transmission characteristics of rogue wave was studied in considering the frequency shift and considering the Raman gain, and the interaction between rogue wave was analyzed in this paper.
出处
《量子光学学报》
CSCD
北大核心
2014年第2期143-147,共5页
Journal of Quantum Optics
基金
国家自然科学基金(61078079)