期刊文献+

混合动力挖掘机轴系扭振特性 被引量:1

Hybrid Excavator Shafting Torsional Vibration Characteristics
下载PDF
导出
摘要 建立了混合动力挖掘机轴系的有限元分析模型,对轴系前5阶模态进行了计算。计算结果表明:与传统挖掘机相比,混合动力挖掘机轴系的1阶模态频率下降了270 Hz;前2阶模态的振型均为扭转振动。建立了混合动力挖掘机轴系的动力学仿真模型,对轴系的扭振特性进行了仿真研究。仿真结果表明:混合动力系统轴系存在周期性的扭振,扭角变化幅度为±0.003°,扭振频谱存在峰值,峰值频率约为48.9 Hz。建立了混合动力挖掘机轴系扭振测试实验台,对不同转速下轴系的最大扭角进行了实验测试。实验结果表明:当混合动力系统轴系转速大于1100 r/min时,轴系的最大扭角保持不变,约为0.003°;当混合动力系统轴系转速小于1100 r/min时,轴系的最大扭角随转速的减小而增大;当轴系转速为896 r/min时,轴系的最大扭角约为0.007°。 Hybrid excavator shafting finite element analysis model was established and shafting first 5 order modals were calculated. Modal calculation results show that hybrid excavator shafting 1 order modal frequency is decreased by 270 Hz compared with traditional excavator shafting. Modal shapes of first 2 order modal are torsional vibration. Hybrid excavator shafting dynamic simulation model was established to obtain shafting torsional vibration characteristics. Simulation results show that shafting torsional vibration is periodic. Torsional angle amplitude is about ±0. 003°. There is a peak in torsional angle frequeney spectrum. The peak frequency is about 48.9 Hz. Hybrid excavator shafting torsional vibration test table was established and torsional vibration testing with different ro- tate speeds were carried out. Experimental results show that shafting maximum torsional angle is about 0. 003° when shafting speed is greater than 1100 r/min. Shafting maximum torsional angle is de creased with rotate speed increasing when shafting speed is less than 1100 r/min. Shafting maximum torsional angle is about 0. 007° when shafting speed is 896 r/min.
机构地区 湖南工程学院
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第11期1443-1446,共4页 China Mechanical Engineering
基金 教育部科学技术研究重点项目(212123) 湖南省自然科学基金资助重点项目(14JJ5006) 教育部新世纪优秀人才支持计划资助项目(NCET-11-0968)
关键词 混合动力 挖掘机 轴系 扭振 hybrid power excavator shafting torsional vibration
  • 相关文献

参考文献6

二级参考文献39

  • 1张承宁,王俊斌,李军求.电驱动车辆中发电机与动力电池组的匹配[J].电气应用,2005,24(1):95-98. 被引量:1
  • 2张林,杜子学,文孝霞,栾彦龙,周均.并联混合动力汽车动力系统参数设计及仿真[J].天津汽车,2005(5):13-16. 被引量:2
  • 3Bridget Volinski. NVH Testing of Hybrid Electric Powertrains [C]. SAE Paper 2001 -01 - 1543.
  • 4Ming Lang Kuang. An Investigation of Engine Start-Stop NVH in a Power Split Powertrain Hybrid Electric Vehicle[ C]. SAE Paper 2006 - 01 - 1500.
  • 5Ooi B T, Low T S. Electromechanieal Spring Stiffness from the Small Perturbation Linearized Equations of Generalized Machine Theory[J]. IEEE Trans,1990,EC-5(2) :373 -379.
  • 6MING Lang Kuang. An Investigation of Engine Start-Stop NVH in A Power Split Powertrain Hybrid Electric Vehicle[ J]. SAE,2006-01-1500.
  • 7BRIDGET Volinski. NVH Testing of Hybrid Electric Powertrains [ J ]. SAE, 2001-01-1543.
  • 8WALTER J Ortmann. Incorporating An Electric Machine Into the Transmission Control of FordS Modular Hybrid Transmission [ J ]. SAE, 2004 - 01 - 0069.
  • 9OOI B T,LOW T S. Electromechanical Spring Stiffness from the Small Perturbation Linearized Equations of Generalized Machine theory[ J ]. IEEE Trans, 1990,EC-5 (2) :373 -379.
  • 10HARIU N, OKADA A. A Method of Predicting and Improving NVH and Stress in Operating Crankshaft Using Nonlinear Vibration Analysis[ J]. SAE, 970502.

共引文献57

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部