期刊文献+

二维溃坝问题的WAF算法及干湿边界研究 被引量:1

Application of WAF scheme based on unstructured mesh for 2D dam-break problem
原文传递
导出
摘要 利用平衡的二阶WAF算法研究了复杂地形上的二维溃坝问题.基于三角形网格建立了扩展平衡的有限体积格式,用WAF格式和HLLC Riemann求解器近似数值通量,中矩形公式离散地形源项,重新定义数值河床处理干湿边界问题,保证算法是平衡和扩展平衡的.利用WAF数值算法研究了复杂地形条件下的二维溃坝波演进问题,较好地模拟了溃坝波在传播中同固体壁面碰撞、反射的现象,计算数据和已有结果相符,证明WAF算法能有效处理溃坝间断解、复杂地形和干湿边界问题. A well-balanced weighted average flux (WAF) scheme was proposed for the 2D shallow water equations with source terms based on the triangular mesh. Here, the WAF scheme with the HLLC solver was applied to approximate the intercell numerical flux at each interface. For the treat- ment of source terms, the rectangle formula was employed to approximate the line integral of the bed slope terms along the sides of each element. At the same time, the technique of redefinition of the dis- cretized bottom was carried out for the treatment of wet/dry fronts. Finally, the dam break of the shallow water flow with complex topography was studied by the WAF method. The numerical results agree with the existed results very well, including the collision of two shock wave meeting and reflec- tion of the shock wave hitting the solid wall. It is known that the problem of the shock wave, complex topography and wet/dry boundary can be deal with by the WAF method.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期75-79,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11102027 51279012) 中央高校基本科研业务费专项资金资助项目(CKSF2011014/SL CKSF2013025/SL CKSF2012010/SL)
关键词 溃坝 浅水波 有限体积格式 WAF算法 干湿边界 dam-break shallow water wave finite volume scheme WAF scheme wet/dry front
  • 相关文献

参考文献13

  • 1槐文信,曾小辉,杨中华.一维和二维溃坝波的混合有限分析解[J].华中科技大学学报(自然科学版),2006,34(9):48-50. 被引量:10
  • 2岳志远,曹志先,闫军.滑坡体溃决洪水数学模型研究[J].水动力学研究与进展(A辑),2008,23(5):492-500. 被引量:7
  • 3潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解[J].水科学进展,2003,14(4):430-436. 被引量:47
  • 4Harten A. High resolution schemes for hyperbolic conservation laws [J]. Journal of Computational Physics, 1983, 49: 357-393.
  • 5Toro E F, Shock-capturing methods for free-surface shallow flows[M]. Chichester: Wliey, 2001.
  • 6Roe L P. Upwind differencing schemes for hyperbolic conservation laws with source terms[C] // Lecture Notes in Mathematics 1270. Berlin= Springer-Verlag, 1986: 41-51.
  • 7Bermudez A, Vazquez-Cendon M E. Upwind meth- ods for hyperbolic conservation laws with source terms[J]. Comput Fluids, 1994, 23: 1049-1071.
  • 8Hubbard E M, Garcia-Navarro P. Flux difference splitting and the balancing of source terms and flux gradients [J ]. Journal of Computational Physics, 2001, 165: 89-125.
  • 9Zhou G J, Causon M D, Minghan G C, et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168: 1-25.
  • 10Gallardo M J, Pares C, Castro M. On a well-bal- anced high-order finite volume scheme for shallow water equations with topography and dry areas[J]. Journal of Computational Physics, 2007, 227: 574- 601.

二级参考文献32

  • 1匡尚富.天然坝溃决的泥石流形成机理及其数学模型[J].泥沙研究,1993,19(4):42-57. 被引量:26
  • 2EF Tom. Riemann solvers and numerial methods for fluid dynamics[M]. Berlin: Springer, 1999.
  • 3Marshall E, Mendez R. Computational aspects of the random choice method for shallow water equations[J]. J Comput Phys, 1981, 39:1 - 21.
  • 4EF Toro. Shock-capturing methods for flee-surface shallow flows[M]. Chichester: John Wiley & Sons, 2001.15- 165.
  • 5Glaister P. Approximate riemann solutions of the shallow water equations[J]. Journal of Hydraulic Research, 1988, 26(3): 293- 306.
  • 6Alcrudo F, Garcia-navarm P, Jose-Maria Saviron. Flux difference splitting for 1D open channel flow equations[J]. Int J Numer Meth Flu0ids,1992, 14: 1009-1018.
  • 7EF Tom. Riemann problems and the WAF method for solving the two-dimensioanl shallow water equations[J]. Phil Trans R Soc, Lond A,1992, 338 : 43 - 67.
  • 8Fraccamllo L, EF Toro. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problem[J].Journal of Hydraulic Research, 1995, 33(6) : 843 - 863.
  • 9Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for 2-D shallow-water equations[J]. Int J Numer Meth Fluids, 1993, 16: 489-505.
  • 10Hui WH, Kudriakov S. Computationa of the shallow water equations using the unified coordinates[J]. SIAM J Sci Comput, 2002, 23:1615-1 654.

共引文献60

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部