期刊文献+

内部压力作用下无限大板中三角孔-边裂纹应力强度因子研究 被引量:3

Study on stress intensity factor of a triangle hole-crack problem in infinite plate subjected to internal pressure
下载PDF
导出
摘要 利用已有文献中的杂交位移不连续边界元法,重点研究了内部压力作用下无限大板中三角孔-边裂纹问题;通过改变孔的几何参数,分析了孔的几何参数对应力强度因子的影响。结果表明:孔对源于其裂纹的应力强度因子具有屏蔽影响和放大影响;当尺寸参数ad ≥adc(adc为某一定值)时,三角孔对源于其裂纹的应力强度因子具有屏蔽影响,并且三角孔尺寸越接近裂纹尺寸,这种屏蔽影响越强烈;当参数 ad≤adc时,三角孔对源于其裂纹的应力强度因子具有放大影响,并且在参数 ad=adm(adm为某一定值)处,这种放大影响达到最大。本文所得结果在工程上具有重要意义。 This paper deals with a crack emanating from a triangle hole in infinite elastic plate subjected to internal pressure by using a hybrid displacement discontinuity method(a boundary element method) proposed recently. By changing hole geometry parameters and by comparing the SIFs of the hole crack problem with those of the center crack problem, the effects of the hole geometry parameters on the SIFs are revealed. It is found that a hole has shielding and amplifying effects on the SIFs of crack emanating from the hole. When ad ≥aab, the stress intensity factor has a shielding effect due to triangular hole. The more near to the crack size the triangular hole size is, the more stronger the shielding effect is. When ad ≤aab, the stress intensity factor has a amplification effect due to triangular hole, and when ad =adm, this amplification effect reaches the maximum. These results may be meaningful in engineering.
出处 《应用力学学报》 CAS CSCD 北大核心 2014年第3期359-363,488,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10272037) 黑龙江省青年学术骨干项目(1252G053) 黑龙江科技大学青年才俊项目
关键词 应力强度因子 边界元 裂尖单元 位移不连续 stress intensity factor,boundary element,crack-tip element,displacement discontinuity
  • 相关文献

参考文献15

  • 1Murakami Y. Stress intensity factors handbook[M]. New York Pergamon Press, 1987.
  • 2Bowie O L. Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole[J]. J Math Phys, 1956, 35: 60-71.
  • 3Newman J C, Jr. An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries, NASA TN D-6376[R]. Washington D C: NASA, 1971: 1-45.
  • 4Nisitani H, Isida M. Simple procedure for calculating KI of a notch with a crack of arbitrary size and its application to non-propagating fatigue crack[C]//Proceedings of the Joint JSME-SESA Conference on ExperimentalMechanics.[S.l.]: JSME, 1982: 150-155.
  • 5Murakami Y. A method of stress intensity factor calculation for the crack emanating from an arbitrarily shaped hole or the crack in the vicinity of an arbitrarily shape hole[J]. Trans Japan Soc Mech Engrs, 1978, 44(378): 423-432.
  • 6Yan Xiangqiao, Liu Baoliang. A numerical analysis of cracks emanating from a surface elliptical hole in infinite body in tension[J]. Mechanica, 2011, 46(2): 263-267.
  • 7Crouch S L, Starfield A M. Boundary element method in solid mechanics, with application in rock mechanics and geological mechanics[M]. London: GeoreAllon & Unwin, 1983: 1-220.
  • 8Scavia C. A numerical technique for the analysis of cracks subjected to normal compressive stresses[J]. Int J Num Methods Eng, 1992, 33: 929-942.
  • 9Yan Xiangqiao. Stress intensity factors for asymmetric branched cracks in plane extensionby using crack tip displacement discontinuity elements[J]. Mechanics Research Communications, 2005, 32(4): 375-384.
  • 10Yan X. A numerical analysis of stress intensity factors at bifurcated crocks[J]. Engineering Failure Analysis, 2006, 13(4): 629-637.

二级参考文献16

  • 1闫相桥.平面弹性裂纹分析的一种有效边界元方法[J].应用数学和力学,2005,26(6):749-756. 被引量:6
  • 2Murakami,Y. Stress Intensity Factors Handbook[M].New York:Pergamon Press,1987.
  • 3Bowie.O L. Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole[J].Journal of Mathematical Physics,1956.60-71.
  • 4Newman,J C Jr. An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries,[NASA TN,1971,D-6376:][R].
  • 5Nisitani,Isida M. Simple procedure for calculating KI of a notch with a crack of arbitrary size and its application to non-propagating fatigue crack[J].Proc Ioint JSME-SESA Conf,1982,(Part Ⅰ):150-155.
  • 6Murakami Y. A method of stress intensity factor calculation for the crack emanating from an arbitrarily shaped hole or the crack in the vicinity of an arbitrarily shape hole[J].Transactions of the Japan Society of Mechanical Engineers,1978,(378):423-432.
  • 7Yan X. An efficient and accurate numerical method of SIFs calculation of a branched crack[J].ASME Journal of Applied Mechanics,2005,(03):330-340.
  • 8Crouch S L,Starfield A M. Boundary Element Method in Solid Mechanics,with Application in Rock Mechanics and Geological Mechanics[A].1983.
  • 9Scavia C. A numerical technique for the analysis of cracks subjected to normal compressive stresses[J].International Journal for Numerical Methods in Engineering,1992.929-942.
  • 10Yan X. Stress intensity factors for asymmetric branched cracks in plane extensionby using crack tip displacement discontinuity elements[J].Mechanics Research Communications,2005,(04):375-384.doi:10.1016/j.mechrescom.2004.10.005.

共引文献9

同被引文献24

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部