期刊文献+

Flexible thermocells for utilization of body heat 被引量:2

Flexible thermocells for utilization of body heat
原文传递
导出
摘要 Plastic thermo-electrochemical ceils (thermocells) involving aqueous potassium ferricyanide/ferrocyanide electrolyte have been investigated as an alternative to conventional thermoelectrics for thermal energy harvesting. Plastic thermocells that consist of all pliable materials such as polyethylene terephthalate (PET), fabrics, and wires are flexible enough to be wearable on the human body and to be wrapped around cylindrical shapes. The performance of the thermocells is enhanced by incorporating carbon nanotubes into activated carbon textiles, due to improved charge transfer at the interface. In cold weather conditions (a surrounding temperature of 5 ℃), the thermocell generates a short-circuit current density of 0.39 A/m2 and maximum power density of 0.46 mW/m2 from body heat (temperature of 36℃). For practical use, we have shown that the thermocell charges up a capacitor when worn on a T-shirt by a person. We also have demonstrated that the electrical energy generated from waste pipe heat using a serial array of the thermocells and voltage converters can power a typical commercial light emitting diode (LED).
出处 《Nano Research》 SCIE EI CAS CSCD 2014年第4期443-452,共10页 纳米研究(英文版)
关键词 wearable thermocell body heat waste heat recovery carbon nanotubes activated carbon textile porous electrode 聚对苯二甲酸乙二醇酯 热量 身体 短路电流密度 热电化学 发光二极管 电压转换器 铁氰化物
  • 相关文献

参考文献41

  • 1Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275 1285.
  • 2Hirai, T.; Shindo, K.; Ogata, T. Charge and discharge characteristics of thermochargeable galvanic cells with an [Fe(CN)6]4/[Fe(CN)6]3 redox couple. J. Electrochem. Soc. 1996, 143, 1305-1313.
  • 3Vullers, R. J. M.; van Schaijk, R.; Doms, l.; Van Hoof, C.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684 693.
  • 4Leonov, V.; Torfs, T.; Fiorini, P.; Van Hoof, C. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sens. J. 2007, 7, 650-657.
  • 5Aydin, E. A.; Gfiler, 1. Recent advances on body-heat powered medical devices. Recent Patents" on Biomedical Engineering 2011, 4, 33-37.
  • 6Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-Iike electrochemical process. Nat. Mater. 2003, 2, 528-531.
  • 7Weber, J.; Potje-Kamloth, K.; Haase, F.; Detemple, P.; VOlklein, F.; Doll, T. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensor. Actuat. A-Phys. 2006, 132, 325-330.
  • 8Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X., Ma, Y.; Wang, X.; Wang, D.; Muto, A., et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532-538.
  • 9Settaluri, K. T.; Lo, H. Y.; Ram, R. J. Thin thermoelectric generator system for body energy harvesting. J. Electron. Mater. 2012, 41, 984-988.
  • 10Hewitt, C. A.; Kaiser, A. B.; Roth, S.; Craps, M.; Czerw, R.; Carroll, D. L. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 2012, 12, 1307-1310.

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部