期刊文献+

Is quantum capacitance in graphene a potential hurdle for device scaling?

Is quantum capacitance in graphene a potential hurdle for device scaling?
原文传递
导出
摘要 Transistor size is constantly being reduced to improve performance as well as power consumption. For the channel length to be reduced, the corresponding gate dielectric thickness should also be reduced. Unfortunately, graphene devices are more complicated due to an extra capacitance called quantum capacitance (CQ) which limits the effective gate dielectric reduction. In this work, we analyzed the effect of CQ on device-scaling issues by extracting it from scaling of the channel length of devices. In contrast to previous reports for metal-insulator- metal structures, a practical device structure was used in conjunction with direct radio-frequency field-effect transistor measurements to describe the graphene channels. In order to precisely extract device parameters, we reassessed the equivalent circuit, and concluded that the on-state model should in fact be used. By careful consideration of the underlap region, our device modeling was shown to be in good agreement with the experimental data. CQ contributions to equivalent oxide thickness were analyzed in detail for varying impurity concentrations in graphene. Finally, we were able to demonstrate that despite contributions from CQ, graphene's high mobility and low-voltage operation allows for ~raphene channels suitable for next generation transistors.
出处 《Nano Research》 SCIE EI CAS CSCD 2014年第4期453-461,共9页 纳米研究(英文版)
关键词 GRAPHENE equivalent circuit quantum capacitance intrinsic delay 电容元件 石墨 缩放 量子 等效氧化层厚度 场效应晶体管 有效介电常数 设备结垢
  • 相关文献

参考文献31

  • 1Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
  • 2Kim, K.; Choi, J.-Y.; Kim, T.; Cho, S.-H.; Chung, H.-J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338- 344.
  • 3Meric, 1.; Baklitskaya, N.; Kim, P.; Shepard, K. L.RF performance of top-gated, zero-bandgapgraphene field-effect transistors. 20081EEE International Electron Deviees Meeting, 2008, 1 -4.
  • 4Moon, J. S.; Curtis, D.; Hu, M.; Wong, D.; McGuire, C.; Campbell, P. M.; Jernigan, G.; Tedesco, J. L.; VanMil, B.; Myers-Ward, R.; et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electr. Device Lett. 2009, 30, 650 -652.
  • 5Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene.Science 2010, 327, 662.
  • 6Wang, Z. X.; Zhang, Z. Y.; Xu, H. L.; Ding, L.; Wang, S.;Peng, L.-M. A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl. Phys. Lett. 2010, 96, 173104.
  • 7Wang, H.; Nezich, D.; Kong, J.; Palacios, T. Graphene- frequency multipliers. 1EEE Electr. Device Lett. 2009, 30, 547-549.
  • 8Lin, Y.-M.; Valdes-Garcia, A.; Hart, S.-J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P.; et al. Wafer-scale grapheneintegrated circuit. Science 2011, 332, 1294-1297.
  • 9Wang, H.; Hsu, A.; Wu, J.; Kong, J.; Palacios, T. Graphene- Based Ambipolar RF Mixers. 1EEE Electr. Device Lett. 2010, 31,906-908.
  • 10Yang, X. B.; Liu, G. X.; Balandin, A. A.; Mohanram, K. Triple-mode single-transistor grapheneamplifier and its applications. ACS Nano2010, 4, 5532-5538.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部