期刊文献+

Large work function shift of organic semiconductors inducing enhanced interracial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures 被引量:1

Large work function shift of organic semiconductors inducing enhanced interracial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures
原文传递
导出
摘要 We report on large work function shifts induced by the coverage of several organic semiconducting (OSC) films commonly used in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) with a porphyrin aggregated layer. The insertion between the organic film and the aluminum cathode of an aggregated layer based on the meso-tetrakis(1-methylpyridinium-4-yl) porphyrin chloride (porphyrin 1), with its molecules adopting a face-to-face orientation parallel to the organic substrate, results in a significant shift of the OSC work function towards lower values due to the formation of a large interfacial dipole and induces large enhancement of either the OLED or OPV device efficiency. OLEDs based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1',3-thiadiazole)J (F8BT) and incorporating the porphyrin 1 at the cathode interface exhibited current efficiency values up to 13.8 cd/A, an almost three-fold improvement over the efficiency of 4.5 cd/A of the reference device. Accordingly, OPVs based on poly(3- hexylthiophene) (P3HT), [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) and porphyrin 1 increased their external quantum efficiencies to 4.4% relative to 2.7% for the reference device without the porphyrin layer. The incorporation of a layer based on the zinc meso-tetrakis (1-methylpyridinium-4-yl)porphyrin chloride (porphyrin 2), with its molecules adopting an edge-to-edge orientation, also introduced improvements, albeit more modest in all cases, highlighting the impact of molecular orientation.
出处 《Nano Research》 SCIE EI CAS CSCD 2014年第5期679-693,共15页 纳米研究(英文版)
关键词 PORPHYRINS OLEDS OPVs aggregates 有机半导体 功函数 卟啉 电子转移 纳米结构 诱导 有机发光二极管 分子取向
  • 相关文献

参考文献62

  • 1Elemans, J.; Van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 2006, 18, 1251-1266.
  • 2Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A field guide to foldamers. Chem. Rev. 2001, 101, 3893-4011.
  • 3Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
  • 4Wang, Z. C.; Li, Z. Y.; Medforth, C. J.; Shelnutt, J. A. Self-assembly and self-metallization ofporphyrin nanosheets. J. Am. Chem. Soc. 2007, 129, 2440-2441.
  • 5Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 2005, 105, 1401-1443.
  • 6He, Y.; Ye, T.; Borguet, E. Porphyrin self-assembly at electrochemical interfaces: Role of potential modulated surface mobility. J. Am. Chem. Soe. 2002, 124, 11964-11970.
  • 7Takahashi, R.; Kobuke, Y. Hexameric macroring of gable-porphyrins as a light-harvesting antenna mimic. J. Am. Chem. Soc. 2003, 125, 2372-2373.
  • 8Johnson, D. G.; Niemczyk, M. P.; Minsek, D. W.; Wiederrecht, G. P.; Svec, W. A.; Gaines, G. L.; Wasielewski, M. R. Photochemical electron transfer in chlorophyll-porphyrin- quinone triads: The role of the porphyrin-bridging molecule J. Am. Chem. Soc. 1993, 115, 5692-5701.
  • 9Grimsdale, A. C.; Mullen, K. The chemistry of organic nanomaterials. Angew. Chem., Int. Ed. 2005, 44, 5592-5629.
  • 10Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 2005, 105, 1491-1546.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部