期刊文献+

基于视觉词袋方法的不同分辨率的遥感影像检索

Indexing of Remote Sensing Images with Different Resolutions Based on Bag of Visual Words Method
下载PDF
导出
摘要 缩小语义鸿沟,是基于内容的遥感影像检索的必经之路,本文提出了一种基于多种底层特征的视觉词袋方法来进行不同分辨率的遥感影像的分类和检索。主要涉视觉词袋模型的构建以及该模型采用不同的底层特征描述对实验结果的影响。通过对不同分辨率的遥感影像进行基于不同底层特征组合的视觉词袋特征的提取,从而得到一系列分类检索实验结果。结果表明,基于底层特征组合的视觉词袋方法能有效地提高不同分辨率遥感影像的分类和检索效果。 How to narrow semantic gap of remote sensing images is only way to researchthe different resolution remote sensing image retrieval. In this paper,we present a method named Bag of Visual Words method. We use a variety of combinations of low-level features in Bag of Visual Words method. We mainly need to build a model of bag of visual words and to choose the best low-level features. In this paper we contrastthe classification result of different feature combination. The result show that the Bag of Visual Words method based on low-level features can effectively improve the correct rate of different resolution remote sensing image classification and retrieval.
作者 江舒静
出处 《测绘与空间地理信息》 2014年第5期95-97,100,共4页 Geomatics & Spatial Information Technology
关键词 视觉词袋 不同分辨率 遥感影像 检索 bag of visual words different resolution remote sensing image image retrieval
  • 相关文献

参考文献3

二级参考文献15

  • 1朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 2Lyons M J, Budynek J, Akamatsu S. Automatic classi- fication of single facial images[J]. IEEE Transactions on Patern Analysis and Machine Intelligence, 1999, 21 (12) :1357-1362.
  • 3Yan Xiang, Su Guangda. Multi-parts and multifeature fusion in face verification[C]// Proceeding of IEEE CVPR Workshop on Biometrics. Anchorage: IEEE, 2008 : 1- 6.
  • 4CHEUNG S S, ZAKHOR A. Efficient video similarity measurement with video signature[J]. IEEE Transactions on Circuits and Systems for Video Technology,2003,13(1): 59-74.
  • 5LIAN N X, TAN Y P, CHAN K L. Efficient video retrieval using shot clustering and alignment[A].The Fourth Pacific Rim Conference on Multimedia[C]. 2003.1801 - 1805.
  • 6LIU F, DONG D, XUE X Y. A fast video clip retrieval algorithm based on VA-File[A]. SPIE Storage and Retrieval for Media Database[C]. San Jose, USA, 2004.
  • 7SIVIC J, RUSSELL B, EFROS A A. Discovering objects and their location in images[A]. International Conference on Computer Vision (IEEE ICCV)[C]. Beijing, China, 2005. 370-377.
  • 8LI F F, PERONA P. A bayesian hierarchical model for learning natural scene categories[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR)[C]. San Diego, CA, USA, 2005.524-531.
  • 9WANG G, ZHANG Y, LI F E Using dependent regions for object categorization in a generative framework[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR)[C]. New York, 2006. 1597-1604.
  • 10DAVID L. Object recognition from local scale invariant feature[A]. International Conference on Computer Vision .(IEEE ICCV)[C]. Kerkyra, Cotth, Greece, 1999. 1150-1157.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部