期刊文献+

关于Stolarsky与Gini平均的一类比较

A Comparison of Stolarsky and Gini Means
下载PDF
导出
摘要 探讨Stolarsky平均S(r,s;x,y)与Gini平均G(r-k,s-k;x,y)(k∈R)的比较,给出了比较的充要条件,完整地解决了上述两平均的大小判定问题,所建立的不等式能推导出现有的诸多结论.文末提出了一个待解决的问题. In this paper, a comparison for the sufficient conditions for the comparison are given inequality we established can deduce many present Stolarsky and the Gini mean is established. The necessary and and the comparison of the means is completely solved. The conclusions. At the end of the paper, we present a problem to be solved.
作者 何灯 吴善和
出处 《广东第二师范学院学报》 2014年第3期15-25,共11页 Journal of Guangdong University of Education
基金 福建省自然科学基金资助项目(2012J01014) 福建省教育厅资助省属高校科研专项(JK2012049)
关键词 Stolarsky平均 Gini平均 不等式 比较 Stolarsky mean Gini mean inequality mean comparison
  • 相关文献

参考文献12

  • 1STOLARSKY K B. Generalizations of the logarithmic mean[J].Math Mag, 1975,48 (2) : 87-- 92.
  • 2STOLARSKY K B.The power and generalized logarithmic means[J]. Amer Math Monthly, 1980,87:545-- 548.
  • 3GINI C. Diuna formula comprensiva delle media[J ]. Metron, 1938,13 : 3 -- 22.
  • 4P,kLES Zs. Inequalities for differences of powers[J].J Math Anal Appl, 1988, 131 : 271--281.
  • 5P/LES Zs. Inequalities for Sums of Powers [J].J Math Anal Appl, 1988, 131 : 265-- 270.
  • 6H.istO.P A.A monotonicity property of ratios of symmetric homogeneous means[J/OL].J Inequal Pure Appl Math, 2002, 3(5 ).http //www.emis.de/journals/JIPAM/images/013_02_JIPAM/013_02.pdf, 2002.
  • 7YANG Z H. On converses of some comparisons inequalities for homogeneous Means[J].(待发表).
  • 8CZINDER P,P/.LES Zs. Some comparison inequalities for Gini and Stolarsky means[J].Math Inequal Appl, 2006,9(4) : 607--616.
  • 9江永明,石焕南.Stolarsky与Gini平均的一个比较[J].湖南理工学院学报(自然科学版),2009,22(3):7-11. 被引量:2
  • 10江永明.Stolarsky与Gini平均的一个新比较[M]//杨学枝.不等式研究(第二辑).哈尔滨:哈尔滨工业大学出版社,2012:67-73.

二级参考文献8

  • 1匡继昌.常用不等式[M].第3版.济南:山东科技出版社,2003.
  • 2Edward Neumen,Zsolt Pales.J.Math.Anal.Appl.2003,278:274-284.
  • 3Zsolt,Pales.Inequalities for differences of powers[J].Math.Anal.Appl.1988,131:265-270.
  • 4Zsolt,Pales.Inequalities for sums of powers[J].Math.Anal.Appl.1988,131:271-281.
  • 5Jozsef Sandor.,Anote on the Gini means[J].Genneral Mathematics,2007.12(4):17-21.
  • 6Czindeer,Peter; Pales,Zsolt.An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means[J].Inequal.Pure Appl.Math,2004,(2):42.
  • 7C.E.M.Pearce,J.Pecaric and J.Sandor.Ageneralzation of Polya's inequality to Stolarsky and Gini means[J].Mathematical Inequalities & Applications,1998,(2):211-222.
  • 8Peter Czinder,Zsolt Pales.An extension of the Gini and Stdlarsky means[J].Inequl.Pure and Appl.Math.2004,(5):42; Available online at http://jipam.vu.edu.an/.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部